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Abstract— Robotic odor source localization is a promising
tool with numerous applications in safety, search and
rescue, and environmental science. In this paper, we present
an algorithm for odor source localization using multiple
cooperating robots equipped with chemical sensors. Laplacian
feedback is employed to maintain the robots in a formation,
introducing spatial diversity that is used to better establish
the position of the flock relative to the plume and its source.
Robots primarily move upwind but use odor information to
adjust their position and spacing so that they are centered
on the plume and trace its structure. Real-world experiments
were performed with an ethanol plume inside a wind tunnel,
and used to both validate the algorithm and assess the impact
of different formation shapes.

I. INTRODUCTION

In the aftermath of many armed conflicts, leftover mine
fields represent a critical danger for local populations.
Clearing these fields presents a model scenario for robotic
chemical source tracking, bringing together a difficult
detection environment and one that is dangerous to navigate,
with risk of loss of life. Nonetheless, it is only one of many,
among more common applications such as gas leak detection
or search and rescue operations.

Over the past decade, we have witnessed significant
evolution in the field of robotic olfaction, looking to address
the above and other scenarios. Simple algorithms based
on the behavior of insect species gave way to a host of
approaches of differing complexity and inspiration, including
not only a wide variety of bio-inspired algorithms but
also those based on probabilistic inference, optimization
meta-heuristics, or multi-robot swarms.

A common difficulty affecting all these solutions is the
limited quantity and quality of information that can be col-
lected by a single sensor. While this can be partially ascribed
to what is still relatively early-stage sensing technology,
it is also a consequence of the phenomenon under study.
Odor propagation is, in effect, non-trivial, with concentration
distribution being far from a smooth gradient [1]. Instead, odor
arrives in packets, leading to wide fluctuations in the measured
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concentrations. Plumes are also dynamic and subject to mean-
dering, i.e. their shape and position is continuously varying.

This paper expands on the work in odor plume tracing pre-
viously introduced in [2]. We present an improved distributed
algorithm to lead a group of robots to the source of a chemical
plume in stable wind conditions. By using multiple robots,
we achieve spatial diversity in the odor sampling, providing
us with more information than a single robot could collect.
Having robots distributed along the crosswind direction makes
it possible, over time, to estimate the relative position of the
formation in the plume. Upwind diversity, less obvious in its
advantages, still provides us with additional data points that
may be averaged, becoming in a way analogous to temporal
diversity and helping to overcome the patchiness of the plume.

Wind takes a central role in our solution. As odor tends
to travel downwind, the direction of the wind provides a
strong indication as to the relative position of the source.
Accordingly, robots favor moving upwind when in the plume.
Furthermore, we do not assume knowledge of either global
position (e.g., GPS) or alignment (e.g., magnetic compass),
and so the perceived direction of the wind becomes the
only common reference for alignment. Relative position
measurements enable a Laplacian feedback controller to
maintain the robots in an arbitrary desired formation, and
odor measurements are exchanged and used to drive the
fleet to and along the center of the plume.

We perform real-world experiments in a wind tunnel, using
Khepera III robots, building upon simulation experiments
previously reported. The algorithm is fully distributed and
self-contained, with no dependency on off-board information
or processing. Wind direction, odor sensing, and inter-robot
relative positioning leverage dedicated custom hardware
designed at DISAL. In these experiments, we show that the
algorithm can quickly converge to the desired formation and
to the plume, and track it to its source.

The paper is organized as follows: in Section II we briefly
review some of the related literature on this subject; in
Section III we introduce the target hardware and environment
for the experiments; in Section IV we present the details
of our algorithm; in Section V we describe the wind tunnel
experiments and the results obtained. Finally, in Section VI,
we present our conclusions and ideas for future work.

II. RELATED WORK

A survey of previous research in odor source localization
and mapping can be found in [3], where a comprehensive tax-
onomy is defined and a multitude of solutions are discussed.



Some of the simplest algorithms are inspired by the
strategies used by biological agents such as bacteria [4] or
silkworm moths [5], and usually consist of a set of basic
states with associated behaviors. These include, for instance,
moving upwind when inside the plume and moving in spirals
when the plume is lost. Braitenberg-type approaches have
also been tested successfully [6]. Experiments conducted
with multiple robots [7], [8] have yielded mixed results, with
authors reporting no clear improvement in the plume traversal
phase, particularly in the absence of explicit collaboration [9].

Formation- and swarm-based algorithms [10], [11] are
designed for cooperative multi-robot scenarios and work
by coordinating the movement of several agents distributed
over the area of interest. The information gained from
simultaneous sampling at multiple locations and the close
cooperation between the robots can greatly increase the
efficiency of these approaches, while retaining computational
simplicity. Our work was originally inspired by the crosswind
formation algorithm presented in [12].

Of the more complex approaches, probabilistic inference
methods have been been used extensively [9], [13]–[15].
Using multiple odor samples obtained over time and space
and a model of plume propagation, agents are able to generate
a probability distribution for the source location. This estimate
is then used to compute movement steps or trajectories.
Meta-heuristic optimization methods applied to the problem
include Particle Swarm Optimization (PSO) [16]–[18], Ant
Colony Optimization (ACO) [19], and others [20].

III. HARDWARE AND SETUP

A. Robots

The algorithm was designed to target the limited
capabilities of the Khepera III robots [21] used in the
experiments. The Khepera III, produced by K-Team, is a
small differential drive robot with a diameter of 12 cm. The
robots are equipped with the Korebot II extension board,
which features an Intel XScale PXA-270, 64 MB of Flash
memory and 128 MB of RAM, and runs a GNU/Linux OS.

Sensor-wise, the base package includes a ring of infrared
sensors, a pair of downward-facing infrared sensors, and a
set of ultrasound proximity sensors. The wheels are equipped
with high-resolution encoders and, for communication, an
802.11b CF card is installed.

B. Additional sensing modules

The robots are equipped with a set of sensor boards
allowing for an autonomous solution with no external
dependencies. These sensors are installed in the form of
three stacked add-on boards previously developed at DISAL,
connected through the I2C bus available on the robots.

The wind direction sensing board [9] consists of a ring of
six Honeywell 111-202CAK-H01 NTC thermistors in a star-
shaped 3D-printed enclosure. The board uses an individually
calibrated log-likelihood model to estimate the wind direction.
Accuracy depends on the characteristics of each specific
board and varies for particular angles, but the standard error
for a well-built and well-calibrated board is approximately

Fig. 1. Khepera III robot fleet. The robots are equipped with a wind
sensing board (top), odor sensing board (middle) and relative localization
board (bottom). The wind sensing board features red and green LEDs for
overhead tracking.

5-8 deg, normally distributed, measured over the whole range.
In reality, sensor error varies significantly across different
boards and its distribution depends on the angle of incidence.

The odor sensing board [9] features a MiCS-5521
volatile organic compound (VOC) resistive sensor from SGX
Sensortech. A small pump continuously drives air through the
sensor package, resulting in comparatively short (sub-second)
response times. No response calibration was performed for
the VOC sensors. Instead, before each experiment, sensors
are left to measure and average their readings over a 3-minute
period, leading to an approximate baseline that is then
subtracted from the measurements taken during experiments.

Inter-robot relative positions are provided by an infrared
range and bearing board [22]. The board employs a ring
of 16 LED infrared emitters and 8 receivers to estimate the
distance (from the received signal strength) and bearing (from
the receivers the signal is reaching) to each neighbor. The
transmitted signal encodes the sender ID so relative positions
can be matched to a specific neighbor. The boards were
configured to transmit at 10 Hz, and calibrated according
to the procedure outlined in [23], with typical resulting
standard errors of 10 % in range and 0.15 rad in bearing.

C. Wind tunnel

The wind tunnel facility, shown in Fig. 2, is approximately
20 m long, 4 m wide, and 2 m high. Due to the construction
of the tunnel and other equipment installed in the channel,
the usable volume for our experiments is approximately
12 m x 3.5 m x 1.6 m. The reference frame (x′−y′) is placed
at the upwind end of the wind tunnel. The x′ axis points
downwind while the y′ axis points 90 ◦ counter-clockwise.

Tracking is accomplished by SwisTrack [24] and a six
GigE camera setup designed to detect two color LEDs on
the robots. The particles from the six cameras are merged
in order to output a single position estimate for each robot.
The low ceiling demands the use of wide-angle lenses that



Fig. 2. The wind tunnel used for the experiments. The odor outlet hose
is at the opposite end, centered on the floor.

in turn introduce significant optical distortion. Nevertheless,
local positioning error in most of the tunnel is around or
below 8 cm, although significant jitter can be observed in
areas of transition between cameras.

The experiments use a pure ethanol plume, generated
by a low-speed pump circulating 1.2 l/min of room air
through an A15 absolute alcohol reservoir, which evaporates
spontaneously (at room temperature). We cannot control or
measure the ethanol concentration at the outflow, but it can be
assumed constant throughout an experiment. The 1 cm wide
outlet is positioned at coordinates (0.7m,1.9m), at floor level.

IV. TECHNICAL APPROACH

Our approach, first detailed in [2], is based on two
key ideas. The first is that the wind direction provides an
important hint as to the direction of the plume source. This
is especially true for the near-laminar flow scenario in which
we operate. The second is that multiple robots spread around
the environment allow us to better determine the location
of the odor plume and trace it to its source.

Our solution implements these two ideas in a three-
component distributed controller running on each robot. The
robots establish a formation, using a graph-based control
framework and an arbitrary formation shape defined a priori,
and move together towards the direction of the incoming
wind. The odor readings obtained by each robot are used
to center the entire formation in the observed plume and to
scale the formation in order to better trace its structure. The
algorithm runs at 10 Hz.

We briefly summarize the construction of the solution in
the following section, but refer the reader to [2] for further
details. Note, however, that the x−y frame used in this work
has been rotated in relation to the previous publication.

A. Algorithm overview

The algorithm consists of three parallel behaviors, each
generating a desired (ẋ,ẏ) velocity vector. These components
deal with upwind movement, formation control, and plume
centering, and generate reference velocity vectors respectively

denoted uw, uf and uc. These vectors are then combined
and transformed to regulate the movement of the robot.

Wind plays a crucial role in our solution. Due to the error
inherent to wind sensing, the measurements coming from
the wind sensor board and the odometry information from
the wheel encoders are fused by a Kalman filter, yielding
θ, an estimate of the true wind direction. At the most basic
level, the algorithm uses this information to bias the motion
towards the perceived upwind direction:

uw =R(θ)

[
1
0

]
(1)

As we intend for the formation to be aligned with the
wind, the same rotation R(θ) is also used throughout the
algorithm, in formation keeping and plume centering, as
a coordinate transformation from the upwind−crosswind
wind frame to the x− y robot frame. In effect, the wind
serves as our sole source of global alignment information.

The formation can be formalized as an undirected graph
G= (V,E), in which vertices V correspond to robots and
edges E correspond to inter-robot relative positioning links.
Convergence to a desired formation can, for a fully connected
graph of holonomic robots modeled as single integrators, be
achieved locally with the following controller:

uf =−


N∑
j=0

Lj
(
xj−βxj

)
N∑
j=0

Lj
(
yj−βyj

)
 (2)

where xj and yj are the relative positions to robot j
in the body frame and Lj = Li,j is the entry of the
positive-semidefinite Laplacian matrix, L=BBT , that relates
controlled node i to neighbor j.

The formation shape is specified by two bias vectors,
describing the position of each robot in the formation, in
the wind frame. βj describes the desired spacing between
robots i and j in the robot frame, i.e. βj =R(θi)S[p̄j−p̄i],
p̄j and p̄i the absolute offsets in the wind frame.

The adaptive bias matrix S= diag(suw,scw) groups two
scalar parameters that represent scaling factors in the upwind
and crosswind directions. As the structure of the plume does
not change significantly in the upwind direction, we use a
constant upwind scaling factor and vary the crosswind scale
using a proportional controller on the difference between
the center concentration (cc) and the sum of the left- and
right-side concentrations (cl and cr, respectively):

ṡcw=kcw((cl+cr)−cc) (3)

The underlying goal is to keep the formation span such that
the side robots are each detecting approximately half of the
center concentration, thereby tracing the shape of the plume.
The range of scw is limited in order to maintain the robots at
a safe distance and within the dimensions of the tunnel. The
proportional gain kcw need not be precisely tuned, provided
its magnitude yields small enough step variations.



We also require the formation to remain centered in
the plume. To that end, we use a crosswind alignment
component dependent on the difference between the average
concentrations detected by robots on the left and right sides
of the formation. To prevent rapid variations in control
outputs due to the high amplitude of odor measurements,
we implement a generalized logistic response given by

uc =R(θ)

[
0

−umaxc +
2umax

c

1+e−(cl−cr)/kl

]
(4)

In all experiments, umaxc is set to 0.25, the maximum cross-
wind speed that may be requested by the centering behavior.
The constant kl depends on the dynamic range of the sensor
and affects the smoothness of the response. The velocity vec-
tors for each component are combined using a weighted sum:

u=kwuw+kcuc+kfuf (5)

In our experiments, we use constant weights
kw = kc = kf = 1, but these can be tuned, possibly
dynamically, to vary the importance of each behavior, e.g. to
prioritize maintaining a rigid formation even at the expense
of quick reaction to changes in the plume.

As we work with nonholonomic differential drive robots,
the vector u=

[
ux uy

]T
is translated into requested linear

and angular speeds using simple proportional controllers
limited to forward movement and saturated to a target top
speed, that is,

v=kvux 0≤v≤vmax (6)
ω=kωuy −ωmax≤ω≤ωmax (7)

B. Improvements over simulation version

While the core ideas of the algorithm have not suffered any
changes, improvements were made in order to better cope
with real-world conditions. These included an assortment
of simple changes: a new proportional controller for the
scaling factor, an improved Kalman filter for wind direction
that takes advantage of the existing Khepera III odometry
tracking framework, and an improved max filter for the odor
measurements that also reduces window size, taking into
account the on-board integration and sensor recovery time.

The most significant changes took place in the handling of
relative positions. In our simulation work, relative positions
were available at every time step and to every other robot,
which is not the case in reality. Occlusion is a problem, and
manifests itself in either the absence of measurements or the
measurement of consistently larger distances due to attenua-
tion or reflection. Trivial solutions consist of considering all
recent measurements (susceptible to indirect detections) and
only considering measurements to robots for which edges ex-
ist in a static graph (standard graph-based formation control).

We hybridize these strategies and consider both edges in the
graph and robots that are close enough to manifest a collision
risk and thus unlikely to be indirect detections. This yields
two advantages: protection against spurious measurements

that may destabilize the formation, and collision avoidance
to every robot, regardless of it being a neighbor in the graph.
The implementation was also changed to only consider recent
measurements, i.e. those obtained within the last 3 cycles.

Due to component tolerances, no two relative position
boards transmit at the exact same power level. This translates
into a situation in which two boards at the same physical
distance will be detected at different ranges. As two
neighboring robots will not perceive the same distance to
each other, this creates a situation in which one will tend
to chase the other. To cope with it, each robot broadcasts
its measured range to its neighbors. The robot’s own
measurements and those received from its neighbors are
averaged and used for formation control. This guarantees that
two neighboring robots see one another at the same distance.

V. WIND TUNNEL EXPERIMENTS

A set of experiments were run using the hardware and
infrastructure described in Section III. In all experiments,
the wind speed is set to approximately 1 m/s. At the start of
a series, the odor baseline for each robot is obtained, after
which the odor source is activated. Robots are placed at the
opposite end of the tunnel, approximately 13 m downwind
from the source and in different initial configurations, and
the algorithm is started.

Plume finding being outside the scope of this work, robots
are expected to start in the vicinity of the plume. The only
requirement is, however, that a single robot remains in the
plume, whereas the others may be outside its influence.
Source declaration is also not addressed; experiments are
manually stopped once the robots approach the source’s end
of the channel.

Individual experiments last approximately three minutes:
although the exact time to completion depends on all three
behaviors, it is primarily influenced by the intensity of the
upwind bias and the parameters of the speed controller, both
kept constant throughout the evaluation. In the course of
the experiments, we witnessed no failures to find the source
attributable to the algorithm; all observed cases were due
to hardware faults.

For the first series of experiments, five nodes were
configured with the formation shown in Fig. 3. Each node
is an endpoint to three edges in the graph, corresponding to
the three relative positions the robot will generally consider
for formation control purposes.

Figure 4 shows the results of three separate runs. The
robots start on the right side of the plot, in three different
starting configurations: a crosswind line to the right of the
plume center (top), a crosswind line to the left of the plume
center (middle) and arbitrarily distributed in the environment
(bottom). They converge to the desired formation as they
move towards the source, represented by the black square
on the left side. A video portraying these experiments is
provided in the accompanying material to this paper.

The trajectories show the robots quickly approaching the
desired formation, and reducing the crosswind spacing (i.e.,
narrowing the formation shape) as they approach the source.
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Fig. 3. Five-node square formation showing graph edges and base
distances. Actual desired distances are dynamically varied by the algorithm.
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Fig. 4. Trajectories obtained using the 5-robot square formation, for three
different sets of starting positions. Black lines are plotted connecting the
robot positions every 40 seconds, and the odor source is represented by
the black square (size not to scale) on the left side.

The remaining formation error is mostly due to the afore-
mentioned systematic error in relative positioning and, to a
certain extent, inaccurate wind measurements. Some observed
jitter corresponds to noise introduced by the tracking system.

Additional experiments were run for three different
formations: a five-robot inverted V formation (Fig. 5a), a
three-robot linear formation (Fig. 5b), and a three-robot
inverted V formation (Fig. 5c). Three experiments were run
in each case, with robot starting positions following the
same recipe as for the first formation.

The outcomes do not differ substantially as a result of
the starting conditions, therefore a single example run for
each formation is shown in Fig. 6. Table I summarizes
the quantitative results obtained in the experiments. The
movement overhead is defined as α= d/∆−1, where d is
the actual distance traveled by the formation centroid (i.e.,
the Riemann sum of its discrete step position variations)
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Fig. 5. Alternative formations: (a) five-robot inverted V formation; (b)
three-robot linear formation; (c) three-robot inverted V formation
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Fig. 6. Example trajectories obtained using the alternative formations,
in the same order. Black lines are plotted connecting the robot positions
every 40 seconds, and the odor source is represented by the black square
(size not to scale) on the left side.

TABLE I
MOVEMENT OVERHEAD AND FINAL ERROR OBTAINED FOR EACH

EXPERIMENT.

5 robots 3 robots
Square Inv. V Linear Inv. V

E1 α 0.30% 0.32% 0.42% 0.89%
ε 0.05 m 0.04 m 0.04 m 0.01 m

E2 α 0.78% 0.97% 1.01% 0.35%
ε 0.04 m 0.06 m 0.10 m 0.04 m

E3 α 0.38% 0.34% 0.51% 0.24%
ε 0.01 m 0.04 m 0.01 m 0.04 m

and ∆ is the norm of its displacement (i.e., the straight-line
distance between starting and final positions). The error is
given by ε= |xc−xs|, the distance between the crosswind
positions of the center robot at the final coordinate (xc) and
that of the source (xs). Prior to metric calculation, tracks
are fed to a low-pass filter to remove SwisTrack noise; this
operation does not substantially distort the actual trajectories,
as system dynamics occur at lower frequency.

While the number of runs does not allow us to draw
statistically significant conclusions for each scenario, the
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Fig. 7. Odor measurements (arbitrary units) obtained along the path during a complete experiment with 5 robots in a square formation, starting on
the left side of the plume. The plot position matches the robot positions, i.e. the top left plot corresponds to the forward left robot.

average performance of the algorithm across the whole
sample is ᾱ=0.54%,σα=0.28 and ε̄=0.04m,σε=0.03. The
results suggest that, in the vast majority of cases, the robots
will trace the plume to a neighborhood of the source smaller
than one robot diameter, and do so while covering only a
slightly longer distance than the optimal straight-line path.

Figure 7 shows the odor measurements obtained by each
robot during the second experiment with the 5-robot square
formation. The plot positions correspond to the formation
positions as defined in Fig. 3. As the robots start on the
left side of the plume, an initial period of higher readings
for right-side robots (and, conversely, an initial period of
very low readings for left-side robots) can be observed. It
is important to note that, despite the trend for increasing
readings, particularly in the case of the center robot, the
signal shows extreme variations.

Figure 8 shows the wind direction estimates for each robot,
generated by the Kalman filter based on wind measurements
and odometry information. Even post-filtering, both low-
and high-frequency noise are non-negligible. Furthermore,
one of the sensors is biased, returning consistently elevated
measurements. Nevertheless, by explicitly and implicitly
capitalizing on information from all the robots, the algorithm
is able to better cope with imperfect sensing. While no data
for the relative positioning board is shown, the combination
of the high connectivity of the formation graph and the range
exchange and averaging mechanism is also robust against
measurement inaccuracies.

VI. CONCLUSIONS AND OUTLOOK

This paper discussed an approach for odor source
localization using multiple cooperative robots. In this
solution, robots move upwind in an arbitrary formation,
collecting and sharing odor data that are used to optimize the
formation shape, center the robots on the plume, and follow
the plume to its source. The solution is distributed and fully

W
in
d
d
ir
ec
ti
o
n
(◦
)

Time (s)

0 50 100 150
−30

−20

−10

0

10

20

30

Fig. 8. Filtered wind direction estimates obtained for each robot during
a complete experiment with 5 robots in a square formation.

self-contained, exploiting only the sensors deployed on the
robots and requiring no external hardware or support. We
introduced changes to the algorithm that, however small, are
key to coping with realistic conditions that were not modeled
in simulation, allowing us to handle even more intermittent
odor distributions, unreliable sensing, and systematic errors.

The resulting solution was subject to validation and
evaluation with real robots. Multiple experiments were
run using an ethanol plume in a wind tunnel environment,
allowing us to measure and study the behavior and
performance of the algorithm. Results show that we are
able to reach the source with minimal distance overhead
(ᾱ = 0.54 %), performing better than comparably simple
single-robot bio-inspired algorithms [9]. While there
are increased financial and energy costs associated with
employing multiple robots, the high efficiency is a clear
advantage for critical missions where time is of the essence.



In the future, we plan to further explore the performance
impact of different formation shapes in systematic simulation
and experimentation, taking advantage of the flexibility of
the algorithm. We also plan to extend the solution to robots
capable of 3D movement, and investigate mechanisms for
robustness to failure of individual robots through adaptive
formation reshaping.

One clear limitation of our algorithm is its reliance on
knowledge of the wind direction. This makes it inapplicable
to low wind scenarios, where chemical transport is diffusion-
dominated and, furthermore, accurately estimating the wind
direction may prove difficult. It also raises questions about
its performance in highly turbulent flows, where an unsteady
wind signal and more complex chemical field will, in
principle, increase the time taken to find the source and lead
to higher failure rates. In spite of the additional complexity,
the use of multiple distributed sensing agents may still
present an advantage when compared to other solutions.
We intend to explore this question and devise alternative
formulations better suited to tackling these scenarios.
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