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Abstract: Scientific knowledge growth combines elements of existing theories into new proposed models, which is combinatorially intractable. Inspired by dual-system psychological theories, we
conceptualize a knowledge creation process in two stages. Stage One narrows the space of existing computational elements based on contextual queues, supplying components from which a new
model will be proposed. It is trained on large datasets but is computationally inexpensive at runtime. Stage Two permutes these elements in accordance with their explicit constraints, resulting in a set of
proposed computable theories. We have developed a system that implements Stage Two. This system provides robust infrastructure for expressing constraints imposed by scientific theories, supplying a

framework relating theory sub-graphs to experimental datasets stored in relational databases. We demonstrate an implementation of this two-stage approach solving materials chemistry problems using
experimental datasets.

1. An overview of Dual-Process Theories (a) Stage I (b) Stage II: (c ) Dual-Process Feedback Loop:

Theories across several fields within psychology have identified two distinct types of cognitive process. Type | Processes are — .
automatic, use implicit knowledge, operate quickly, and provide intuitive results based on subconscious cognition. Type |l processes Input from problem statement Va”r"iggltes: 000000 _ [ processes ] [ processes 1
are deliberative, use explicit knowledge, operate slowly, and require conscious effort. These processes frequently work synergistically, ( .
but evidence of their distinct workings appears in situations where the two offer conflicting solutions. Type | processes frequently Q l“ttl\ Construct most plausibi
respond to complex tasks by using simple heuristics that often contradict deliberative Type Il responses. By manipulating priming Bkggd _—|  orrelevant model N
effects informing these heuristics, competing decision making processes can be assessed (Lucas 2005). Evidence for this dualism has ?;, P knowledge Hp\‘
been found in the study of reasoning (Wason 1974, Evans 2006), decision making (Van Gelder 2014, Motro 2018, Dhar 2013), learning s <4
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In this work we are inspired by the parallels between a generalized Type | psychological process and many existing machine \ sl

learning approaches (see Table 1). However, corresponding representations of scientific theories analogous to Type Il processes are VS,L,-Z%?ZS_. Inferences/judgments

undeveloped. The apparent utility of synergistic processing between the two psychological systems suggests that development of NQURPULS

these “Stage II” approaches may allow interoperability between implicit and explicit theories when applying machine learning Figure 3 (above): (a-b) A comparison of the first and second stages in the proposed dual-stage process. (¢ ) A comparison of this process to a heuristic-analytic
approaches to scientific datasets. dual process model from the literature (Evans, 20006).

Type | Psychological Processes |Proposed Stage | Type |l Psychological Processes |Proposed Stage Il 4 Computational Benefits of a Dual-Process Approach Figure 4 (below): Graph of experimental

. . _ _ procedure to produce and process battery
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Methods theories theory generation provides a theoretical justification for the dual-stage approach (Figure 3).
The role of deductive reasoning in the scientific method, analogous to Stage Il in our
Evolutionarily old Decades-old techniques Evolutionarily Recent General solutions non-existent proposed approach, is to combine previously established theories and principles in novel
ways to generate candidate explanations for observed phenomena. One might imagine a
Fast, parallel Fast at runtime Slow, sequential, limited by Combinatorially limited database consisting of a large number n of individual constraints representing the totality of
working memory known theory in a subfield. As n increases, the number of possible permutations of these
constraints increases proportionally to the factorial of n. Thus, an algorithm that tests all
Inductive, Heuristic Correlational Deductive, Analytic Logical possible pipelines constructed from n constraints would exhibit complexity of O(n!).
By contrast, a Stage | neural network trained to classify n constraints as relevant or
irrelevant exhibits polynomial complexity of O(nP), where the value of p depends on the
network architecture.

A dual-process approach, then, would use Stage | to winnow the space of relevant
constraints from a large number n down to a small number which is independent of n.
Different sets of a constraints would be sequentially suggested by Stage | until Stage Il is
able to generate an accepted pipeline. In this way, dual stage processes are
hypothesized to realize the benefits of Type-ll reasoning while countering its O(n!)
Table 1: a comparison of dual-process theories in psychology with the proposed dual-stage automated knowledge generation system. computational inefficiency through the use of O(nP) Type | processes.

Implicit, Language- ‘Black box’ Explicit, Language-based Human-readable
independent

Trained continuously over Trained using large datasets Models may be immediately Rules may be explicitly encoded
lifetime remembered

Shared with animals Neural Networks Distinctively human
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2. A Dual-Process Computational Approach for Science l | : ~| I

In most scientific fields there is a persistent computability gap between the
theories and models used in experimental design on one hand, and the datasets Experiment
generated by these experiments on the other (figure 1). Explicit mental models
are typically described in lab books and written documents but are rarely Data Collection %
translated into a computable format.

Developing tools that allow researchers to easily input general mental
models of experiments in a computable form has the potential to solve Figure 1: the computability gap in scientific datasets
several important research problems by serving as a computable ‘Type II’

We demonstrated the relevance of our approach by applying our Stage Il system to materials

Cgr;ttea";‘ifg:e chemistry datasets. These datasets evaluated a novel binder material for Lithium-lon Batteries, and were
ooy, m, of obtained by following a complex synthesis procedure (Ransil 2018). The graph corresponding to this
1 procedure is shown in figure 4, in which samples are outlined in blue and constraints, experimental
processes and data analysis steps are outlined in orange. All objects in this graph can be imported into and
exported from the analysis engine schema using the JSON format discussed in section 3 (with humerous
edges and constraints omitted from the graph for clarity). The analysis engine is able to use this
representation to solve for experimentally relevant results due to explicit representations of constraints, and

perform data processing as well as planning subsequent experiments. A graph of the effect of composition
model. These problems include (1) improving the efficiency of data analysis by allowing improved search capabilities, (2) leveraging on battery capacity is shown in figure 5.

institutional knowledge across an organization and among distant collaborators, and (3) the potential for closed-loop automated This proof of concept shows that materials chemistry data can be usefully represented and

knowledge generation processes that produce cogent insights rather than black-box correlational results. processed using the proposed Stage Il system. Subsequent effort will go into broadening the scope of
this system to other fields and demonstrating integration with Type | processes. 100
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