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Abstract: Scientific knowledge growth combines elements of existing theories into new proposed models, which is combinatorially intractable. Inspired by dual-system psychological theories, we
conceptualize a knowledge creation process in two stages. Stage One narrows the space of existing computational elements based on contextual queues, supplying components from which a new
model will be proposed. It is trained on large datasets but is computationally inexpensive at runtime. Stage Two permutes these elements in accordance with their explicit constraints, resulting in a set of
proposed computable theories. We have developed a system that implements Stage Two. This system provides robust infrastructure for expressing constraints imposed by scientific theories, supplying a
framework relating theory sub-graphs to experimental datasets stored in relational databases. We demonstrate an implementation of this two-stage approach solving materials chemistry problems using
experimental datasets.

1. An overview of Dual-Process Theories
Theories across several fields within psychology have identified two distinct types of cognitive process. Type I Processes are

automatic, use implicit knowledge, operate quickly, and provide intuitive results based on subconscious cognition. Type II processes
are deliberative, use explicit knowledge, operate slowly, and require conscious effort. These processes frequently work synergistically,
but evidence of their distinct workings appears in situations where the two offer conflicting solutions. Type I processes frequently
respond to complex tasks by using simple heuristics that often contradict deliberative Type II responses. By manipulating priming
effects informing these heuristics, competing decision making processes can be assessed (Lucas 2005). Evidence for this dualism has
been found in the study of reasoning (Wason 1974, Evans 2006), decision making (Van Gelder 2014, Motro 2018, Dhar 2013), learning
and memory (Smith 2000), social psychology (Wilson 2000, Hochman 2015, Strack 2015), and the development of metacognition
(Amsel 2008).

In this work we are inspired by the parallels between a generalized Type I psychological process and many existing machine
learning approaches (see Table 1). However, corresponding representations of scientific theories analogous to Type II processes are
undeveloped. The apparent utility of synergistic processing between the two psychological systems suggests that development of
these “Stage II” approaches may allow interoperability between implicit and explicit theories when applying machine learning
approaches to scientific datasets.

2. A Dual-Process Computational Approach for Science
In most scientific fields there is a persistent computability gap between the

theories and models used in experimental design on one hand, and the datasets
generated by these experiments on the other (figure 1). Explicit mental models
are typically described in lab books and written documents but are rarely
translated into a computable format.

Developing tools that allow researchers to easily input general mental
models of experiments in a computable form has the potential to solve
several important research problems by serving as a computable ‘Type II’

model. These problems include (1) improving the efficiency of data analysis by allowing improved search capabilities, (2) leveraging
institutional knowledge across an organization and among distant collaborators, and (3) the potential for closed-loop automated
knowledge generation processes that produce cogent insights rather than black-box correlational results.

3. Constraint-Pipeline Systems for 
Representing Explicit Knowledge

We have implemented a generalized system for
representing scientific knowledge across domains
shown in Figure 2. In this system, a Schema consists
of a set of Variables representing quantities or
abstract objects and Constraints representing
relationships between these objects. Variables
participate in a hierarchical namespace as shown in
Figure 2 (a). Constraints relate a set of input
Variables to a set of output Variables as shown in
Figure 2 (b). These Constraints may correspond to
simple algebraic operations or to any more abstract
function. A problem may be posed to the Schema in
the form of a set of input and output Variables. The
function schema.plan() will then attempt to find a

Pipeline, or a sequence of Constraints, that solves for the output Variables as a function of input Variables as illustrated in Figure 2
(c). A list of successful pipelines representing this Schema’s solutions to the posed problem, are exported as outputs. All of
these objects can be exported and imported using JSON serialization, in order to support efficient sharing and transfer between
different solver implementations.

Type I Psychological Processes Proposed Stage I Type II Psychological Processes Proposed Stage II

Unconscious mental processes Neural Networks, Statistical 
Methods

Conscious mental processes Explicit representations of 
theories

Evolutionarily old Decades-old techniques Evolutionarily Recent General solutions non-existent

Fast, parallel Fast at runtime Slow, sequential, limited by 
working memory

Combinatorially limited

Inductive, Heuristic Correlational Deductive, Analytic Logical

Implicit, Language-
independent

‘Black box’ Explicit, Language-based Human-readable

Trained continuously over 
lifetime

Trained using large datasets Models may be immediately 
remembered

Rules may be explicitly encoded

Shared with animals Neural Networks Distinctively human ?

Table 1: a comparison of dual-process theories in psychology with the proposed dual-stage automated knowledge generation system. 

Figure 1: the computability gap in scientific datasets

Figure 2: construction of pipelines to solve specific problems by leveraging constraints

Figure 3 (above): (a-b) A comparison of the first and second stages in the proposed dual-stage process. (c ) A comparison of this process to a heuristic-analytic 
dual process model from the literature (Evans, 2006).

4. Computational Benefits of a Dual-Process Approach
An analysis of the computational complexity of single and dual stage approaches to novel

theory generation provides a theoretical justification for the dual-stage approach (Figure 3).
The role of deductive reasoning in the scientific method, analogous to Stage II in our

proposed approach, is to combine previously established theories and principles in novel
ways to generate candidate explanations for observed phenomena. One might imagine a
database consisting of a large number n of individual constraints representing the totality of
known theory in a subfield. As n increases, the number of possible permutations of these
constraints increases proportionally to the factorial of n. Thus, an algorithm that tests all
possible pipelines constructed from n constraints would exhibit complexity of O(n!).
By contrast, a Stage I neural network trained to classify n constraints as relevant or
irrelevant exhibits polynomial complexity of O(np), where the value of p depends on the
network architecture.

A dual-process approach, then, would use Stage I to winnow the space of relevant
constraints from a large number n down to a small number which is independent of n.
Different sets of a constraints would be sequentially suggested by Stage I until Stage II is
able to generate an accepted pipeline. In this way, dual stage processes are
hypothesized to realize the benefits of Type-II reasoning while countering its O(n!)
computational inefficiency through the use of O(np) Type I processes.

(c ) Dual-Process Feedback Loop:
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Figure 4 (below): Graph of experimental 
procedure to produce and process battery 
data varying novel binder content

Figure 5 : 
Experimental result 
of binder tests

5. Application to Materials Chemistry
We demonstrated the relevance of our approach by applying our Stage II system to materials
chemistry datasets. These datasets evaluated a novel binder material for Lithium-Ion Batteries, and were
obtained by following a complex synthesis procedure (Ransil 2018). The graph corresponding to this
procedure is shown in figure 4, in which samples are outlined in blue and constraints, experimental
processes and data analysis steps are outlined in orange. All objects in this graph can be imported into and
exported from the analysis engine schema using the JSON format discussed in section 3 (with numerous
edges and constraints omitted from the graph for clarity). The analysis engine is able to use this
representation to solve for experimentally relevant results due to explicit representations of constraints, and
perform data processing as well as planning subsequent experiments. A graph of the effect of composition
on battery capacity is shown in figure 5.

This proof of concept shows that materials chemistry data can be usefully represented and
processed using the proposed Stage II system. Subsequent effort will go into broadening the scope of
this system to other fields and demonstrating integration with Type I processes.


