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A Finality Calculator for Filecoin’s Expected Consensus

GUY GOREN and JORGE M. SOARES, Protocol Labs

We propose a finality calculator for Filecoin’s Expected consensus that considers what takes place during epochs and can

attain, under normal operating conditions, an error probability of 2
−30

in 30 epochs (15 minutes) - a 30x improvement

over the current 900-epoch threshold. It depends only on a node’s local view and can be implemented without protocol

changes.

CCS Concepts: • Security and privacy→ Distributed systems security.
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1 INTRODUCTION
Filecoin’s Expected Consensus (EC) comes with probabilistic finality and a 900-epoch soft finality threshold,

intended to achieve a finality guarantee (tipset replacement probability) of 2
−30

[4]. While network partic-

ipants (e.g. exchanges, L2 operators, application developers) use different confirmation thresholds, they

pessimistically wait between 100-900 epochs before considering a transaction final, leading to delays in the

order of hours.

Instead of naively counting the number of epochs, we propose a finality calculator that considers what

takes place during those epochs and, under expected operating conditions, can attain the same level of

certainty in fewer epochs. We embark on an analysis of Filecoin’s finality, i.e., the probabilistic guarantees

that a given tipset will always be in the canonical chain, and show that, in real operating conditions, the

same error probability 2
−30

can be achieved in 30 epochs (15 minutes) – a 30x improvement.

This algorithm is practical, only requires visibility to blocks produced by honest miners, and can be

implemented by clients or off-chain applications without requiring any changes to the protocol.

This document serves as a theoretical companion to FRC-0089
1
. Please refer to the FRC formore background,

motivation, and implementation information.

2 PRELIMINARY CONSIDERATIONS

2.1 Randomness
Consider a chain with:

• 𝑁 : number of validators

• 𝑓 : adversarial fraction

• ℎ: honest fraction (1 − 𝑓 )

• 𝑒: expected number of blocks per round

Denote 𝑋𝑓 [𝑟 ] the random variable that represents the number of blocks won by the adversary in round 𝑟 .

Similarly, 𝑋ℎ [𝑟 ] denotes the number of honest blocks. Bin(𝑘 ;𝑛, 𝑝) is the Binomial distribution where 𝑛 is the

number of trials and 𝑝 is the probability of success for each trial, 𝑘 is the number of successes (value of a

random variable). In our system, we have 𝑛 = 𝑁 and 𝑝 = 𝑒
𝑁
. Therefore:

Pr[𝑋𝑓 = 𝑘] = Bin
(
𝑘 ;𝑛 · 𝑓 , 𝑒

𝑛

)
(1)

2.2 Poisson approximation
We will repeatedly approximate the Binomial distribution by a Poisson distribution:

Bin(𝑘 ;𝑛, 𝑝) ≈ Pois(𝑘 ;𝑛 · 𝑝). (2)

This approximation is good provided 𝑛 is large and 𝑛 · 𝑝 ≤ 𝑒 ≪ 𝑛.

1
https://github.com/filecoin-project/FIPs/blob/master/FRCs/frc-0089.md
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2.3 Communication
In this analysis, we assume the classic round-based synchronous communication model. Since the Filecoin

documentation uses the term epochs, we will use rounds and epochs interchangeably. Moreover, for upper

bounding the error probability, we assume consistent block broadcast, which has recently been implemented

in the Filecoin network [2].

3 ANALYSING THE PROBABILITY OF ERRORS
Our analysis draws inspiration from techniques developed in [1] combined with techniques from [3], which

we apply to the observed chain history of Filecoin. We denote by 𝐺 the good addition, i.e. the number of

blocks observed in the local heaviest chain (lh-chain) between target epoch 𝑠 and current epoch 𝑐 . We then

split the analysis into three time spans:

Distant past The random variable 𝐿 describes the adversarial lead at epoch 𝑠 , i.e. the blocks produced

by the adversary to form a competing chain minus the blocks observed in lh-chain up to the epoch 𝑠 .

𝐿 is non-negative: for adversarial competing chains that are lighter than the lh-chain, 𝐿 = 0. When

𝐿 ≥ 𝐺 , there is a possible safety violation.

Recent past The random variable 𝐵 describes the blocks produced by the adversary between epoch 𝑠

and the current epoch 𝑐 . When 𝐿 + 𝐵 ≥ 𝐺 , there is a possible safety violation.

Future The random variable𝑀 describes the blocks expected to be produced by the adversary minus the

number of blocks produced by honest validators when slowed by the adversary. When 𝐿 +𝐵 +𝑀 ≥ 𝐺 ,

there is a possible safety violation.

Our analysis is based on the two lemmas below. Roughly, they establish that all chains that end with an

honest block are visible to the user.

lemma 3.1. Let 𝑏ℎ be a block produced by an honest validator at round 𝑟 . Then the tipset chain ending at
parent(𝑏ℎ) is known to all honest validators by round 𝑟 + 1.

Proof. Follows from the guarantees provided by Consistent Broadcast. □

lemma 3.2. Let 𝑐 be the current round. Let 𝑡𝑎 [𝑣𝑖 ] be the "best" tipset chain of which validator 𝑣𝑖 is aware (and
would choose as parent), which ends in round 𝑎, and let 𝑡𝑏 [𝑣𝑖 ] be the "best-competitor" tipset chain of which 𝑣𝑖
is aware, which ends in round 𝑏. Then, in the interval [𝑏, 𝑐 − 1], the tipset chain 𝑡𝑏 [𝑣𝑖 ] could have only been
extended with malicious blocks (blocks proposed by malicious validators).

Proof. Assume that in the interval [𝑏, 𝑐 − 1], the tipset chain 𝑡𝑏 [𝑣𝑖 ] has also been extended with honest

blocks (blocks proposed by honest validators). Denote one of these (possibly single) blocks by𝑏ℎ . By Lemma 3.1,

the block 𝑏ℎ is visible to all honest validators at time 𝑐 . Consequently, the chain ending at a tipset containing

𝑏ℎ is visible to all honest validators and to 𝑣𝑖 in particular. Since this tipset chain extends 𝑡𝑏 [𝑣𝑖 ], it is "better"
than 𝑡𝑏 [𝑣𝑖 ]. This is in contradiction to 𝑡𝑏 [𝑣𝑖 ] being the "best-competitor" tipset chain of which 𝑣𝑖 is aware. □

Recall that the fork choice rule in Filecoin is based on chain validity and weight, where:

(1) Validity is determined by a set of rules that govern the correct construction of blocks

(2) Weight incorporates the number of blocks mined and a factor related to the storage in the power table

For simplicity, we ignore the subtleties of the two and refer to the "best" tipset as that at the end of the

heaviest valid chain. We also conflate the weight of a chain with the number of blocks it contains. We can

now start to derive the probabilities for each of the time spans.

3.1 Span 1: Distant past
Let 𝑠 be the epoch for which the finality probability is being evaluated, and 𝑐 be the current epoch (𝑐 > 𝑠).

The random variable 𝐿 describes the adversarial (secret) lead gained from the last final tipset (e.g. the tipset

at epoch 𝑐 − 900) until epoch 𝑠 . It behaves like a biased random walk whenever 𝐿 > 0 but does not decrease

when 𝐿 = 0.
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For each epoch 𝑖 ∈ [𝑐 − 900 + 1, 𝑠], the step expectation is 𝑓 · 𝑒 − 𝑐ℎ𝑎𝑖𝑛[𝑖], where 𝑐ℎ𝑎𝑖𝑛[𝑖] is the number

of blocks at the tipset of the lh-chain that was constructed at epoch 𝑖 and 𝑓 · 𝑒 is the expected number of

adversarial blocks at an epoch (i.i.d).

The fact that 𝐿 cannot become negative, i.e., it “sticks to zero” changes the analysis somewhat since we

cannot use the classic random walk model. Instead, to account for the distribution of 𝐿 we can look at a

reverse process (𝐿′) that starts at the tipset of interest of epoch 𝑠 and moves backwards in time. In this case,

we get that 𝐿′ is distributed according to the following:

Pr[𝐿′ = 𝑘] = max

{
Pr[𝐿′

1
= 𝑘1], Pr[𝐿′2 = 𝑘2], ...

}
(3)

𝑘𝑖 = 𝑘 +
𝑠∑︁

𝑗=𝑠−𝑖
𝑐ℎ𝑎𝑖𝑛[ 𝑗] . (4)

For each 𝐿′𝑖 , we replace the binomial distributions of the steps by a Poisson distribution

𝐿′𝑖 ∼ Bin

(
𝑠∑︁

𝑗=𝑠−𝑖
𝑓 · 𝑛, 𝑒

𝑛

)
∼ Pois

(
𝑠∑︁

𝑗=𝑠−𝑖
𝑓 · 𝑒

)
(5)

and get

Pr[𝐿 = 𝑘] = Pr[𝐿′ = 𝑘] . (6)

3.2 Span 2: Recent past
The random variable 𝐵 is independent from 𝐿 and follows a simple binomial distribution as explained

previously for 𝑋𝑓 . For ease of computation, we again approximate the binomial distribution by a Poisson one:

𝐵 ∼ Bin

(
𝑖=𝑐∑︁

𝑖=𝑠+1
𝑓 · 𝑛, 𝑒

𝑛

)
∼ Pois

(
𝑖=𝑐∑︁

𝑖=𝑠+1
𝑓 · 𝑒

)
(7)

3.3 Span 3: Future
The future production of honest blocks follows a binomial distribution. However, it might be that not all

honest blocks are added to the same tipset, which happens when the adversary splits the honest chain.

Specifically, to split the honest power, the adversary must be able to provide parent tipsets which are "better"

than the currently available lh-chain one. We calculate a lower bound on the public chain growth rate based

on the following two assumptions:

• Using the blocks of epoch 𝑖 , the adversary can optimally split the network power for epoch 𝑖 + 1.

• Only adversarial blocks from epoch 𝑖 may be used to split the power at epoch 𝑖 + 1.

The first assumption considerably favours the adversary, while the latter moderately favours us by

somewhat limiting the adversary’s capabilities. We conjecture that these assumptions correspond to a lower

bound without them since, compared to without them, they seem to favour the adversary more than us. This

is due to the practical difficulty of coordinating a perfect split that significantly benefits the adversary. On

the other hand, using old blocks for the split has a limited effect due to their diminishing relevance.

With consistent broadcast, we have that, for 𝐵 [𝑖 − 1] and 𝐻 [𝑖] the number of adversarial blocks and honest

blocks in epochs 𝑖 − 1 and 𝑖 , respectively, the honest chain grows by at least

𝑍 [𝑖] = min

{
𝐻 [𝑖] + 𝐵 [𝑖 − 1]

2
𝐵 [𝑖−1] , 𝐻 [𝑖]

}
. (8)

We therefore have that, at step 𝑖 , the random variable 𝑀 changes according to the sum 𝐵 [𝑖] − 𝑍 [𝑖]. To
simplify the calculations, we replace the random variable 𝑍 by 𝑍 ′

:
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𝑍 ′ ∼ Pois(𝐸 [𝑍 ])

= Pois

(
𝐸

[
min

{
𝐻 [𝑖] + 𝐵 [𝑖 − 1]

2
𝐵 [𝑖−1] , 𝐻 [𝑖]

}])
= Pois

(
Pr(𝐻 [𝑖] > 0) · 𝐸

[
𝐻 [𝑖] + 𝐵 [𝑖 − 1]

2
𝐵 [𝑖−1]

] ) (9)

We define the random process𝑀𝑖 recursively to be

𝑀𝑖 ≜ 𝑀𝑖−1 + 𝐵 [𝑖] − 𝑍 ′ [𝑖], 𝑀0 = 0

=

𝑖∑︁
𝑗=1

𝐵 [ 𝑗] − 𝑍 ′ [ 𝑗] =
𝑖∑︁
𝑗=1

𝐵 [ 𝑗] −
𝑖∑︁
𝑗=1

𝑍 ′ [ 𝑗]
(10)

Moreover, for each 𝑖 ∈ {1, ..., 𝑛}, we have that ∑𝑛
𝑖=1 𝐵 [ 𝑗] ∼ Pois(𝑛 · 𝑒 · 𝑓 ) and ∑𝑛

𝑖=1 𝑍
′ ∼ Pois(𝑛 · 𝐸 [𝑍 ]).

As the difference between two independent Poisson-distributed random variables, each𝑀𝑖 follows a Skellam

distribution [5]. Thus, we conclude that:

𝑀𝑖 ∼ Skellam(𝑛 · 𝑒 · 𝑓 , 𝑛 · 𝐸 [𝑍 ]) (11)

𝑃𝑟 (𝑀 = 𝑘) = max {𝑃𝑟 (𝑀1 = 𝑘), 𝑃𝑟 (𝑀2 = 𝑘), ...} (12)

3.4 Error probability
For an observed good addition 𝐺 = 𝑘 , the safety violation event happens only if one of the three mutually

exclusive events occurs:

(1) 𝐿 ≥ 𝑘

(2) 𝐿 < 𝑘 but 𝐿 + 𝐵 ≥ 𝑘

(3) 𝐿 + 𝐵 < 𝑘 but 𝐿 + 𝐵 +𝑀 ≥ 𝑘

Knowing that

Pr(𝐿 + 𝐵 ≥ 𝑘 |𝐿 < 𝑘) =
𝑘−1∑︁
𝑙=0

Pr(𝐿 = 𝑙) · Pr(𝐵 + 𝑙 ≥ 𝑘), (13)

and that

Pr(𝐿 + 𝐵 +𝑀 ≥ 𝑘 |𝐿 + 𝐵 < 𝑘) =
𝑘−1∑︁
𝑙=0

𝑘−𝑙−1∑︁
𝑏=0

Pr(𝐿 = 𝑙) · Pr(𝐵 = 𝑏) · Pr(𝑀 ≥ 𝑘 − 𝑙 − 𝑏). (14)

We get

Pr(𝑒𝑟𝑟𝑜𝑟 ) ≤ Pr(𝐿 ≥ 𝑘) + Pr(𝐿 + 𝐵 ≥ 𝑘 |𝐿 < 𝑘) + Pr(𝐿 + 𝐵 +𝑀 ≥ 𝑘 |𝐿 + 𝐵 < 𝑘)

= Pr(𝐿 ≥ 𝑘) +
𝑘−1∑︁
𝑙=0

Pr(𝐿 = 𝑙) ·
(
Pr(𝐵 + 𝑙 ≥ 𝑘) +

𝑘−𝑙−1∑︁
𝑏=0

Pr(𝐵 = 𝑏) · Pr(𝑀 ≥ 𝑘 − 𝑙 − 𝑏)
)

(15)
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