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Abstract Odor plume tracing is a challenging robotics application, made difficult by
the combination of the patchy characteristics of odor distribution and the slow re-
sponse of the available sensors. This work proposes a graph-based formation control
algorithm to coordinate a group of small robots equipped with odor sensors, with the
goal of tracing an odor plume to its source. This approach makes it possible to orga-
nize the robots in arbitrary and evolving formation shapes, with the aim of improving
tracking performance. The algorithm was evaluated in a high-fidelity submicroscopic
simulator, using different formations and achieving quick convergence and negligible
distance overhead in laminar wind flows.
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1 Introduction

As early as the 1950s, researchers were looking into the use of electronic devices
for odor sensing, an application commonly referred to as machine olfaction [9, 24].
While it was not until several decades later that work in robotic olfaction began [27], it
has been steadily intensifying ever since. The possibilities are endless, including very
promising applications in search and rescue operations [11], as well as environmental
and industrial safety [5].

Odor source localization is frequently divided in three stages: plume finding,
plume traversal, and source declaration. We concentrate on the intermediate and most
frequently studied, plume traversal, i.e., following a chemical plume to its source.
Odor plume traversal presents particular challenges when compared to other search
problems: due to turbulent transport, chemical concentration in a plume tends to be
very patchy, with packets of very high concentration and periods of low or completely
absent odor [26]. Along with the relatively slow response of odor sensors, this makes
it hard or impractical to use simple gradient ascent techniques.

Previous work in the field has resulted in a significant number of methods for
odor tracking, of which a detailed survey is provided in [14]. Many algorithms
take inspiration from living creatures, such as bacteria [4] or silkworm moths [20],
and generally operate by switching a single robot among a set of simple behaviors.
Experiments have also been conducted with multiple robots [10, 17, 13], acting both
independently and cooperatively. Other approaches include Braitenberg-type control
[16], probabilistic inference [28, 17, 15] and meta-heuristic optimization methods
[1, 2, 3, 12, 21].

We choose to focus on formation-based algorithms, which take advantage of
multiple cooperating robots moving in formation to locate the source with minimal
wandering. Our work is strongly inspired by the crosswind formation work in [18],
as well as other formation- and swarm-based approaches [8, 19, 10]. This decision
is driven by the choice of success metric: while the energy budget goes up with the
number of robots, these techniques allow us to minimize the distance overhead and
time to the source, a requirement in scenarios such as the aforementioned search and
rescue. Furthermore, our solution requires very little processing power, is easy to
implement, and requires no sensor information other than wind, odor and relative
positions — wheel encoder information can optionally be used to improve the
behavior of the algorithm.

A graph-based formation controller drives the robots to an arbitrary leaderless
formation. It is based on the principle of Laplacian feedback, which has been used
extensively in other contexts [22, 6]. The only information required by each robot
is the relative position of its neighbors, and the formation may take an arbitrary
shape and dynamically change over time. Each robot broadcasts its own odor reading,
which is used to adjust the separation between robots and to bias the movement of
the formation so as to center it over the plume. At all times, robots are configured
with an urge to move upwind, i.e., in the expected direction of the plume source. The
details of the algorithm are presented in Section 2. Note that the core of this paper is
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not a specific formation proposal, but a framework that allows us to use any desired
formation, possibly shaped by the underlying odor plume.

The proposed solution was validated and evaluated in a submicroscopic simulator
that mimics our existing real-world infrastructure, including the Khepera III differen-
tial wheeled robots and add-on odor and wind sensing boards. The simulation arena
is a model of the DISAL wind tunnel, using laminar wind flow and a filament-based
odor propagation model. The fully equipped Khepera III robot and an inside view of
the wind tunnel are shown in Figure 1, while Section 3 details the simulations and
results obtained for two example formation shapes.

Fig. 1 (Left) Fully equipped Khepera III robot, including the range and bearing board (bottom),
odor sensing board (middle) and wind sensing board (top). (Right) Inside view of the DISAL wind
tunnel.

2 Controller design

Wind takes a central role in our algorithm, as odor displacement (and desired robot
displacement) mostly takes place along the wind direction. Furthermore, the lack of
a heading sensor renders wind our only source for global orientation.

The formation shape is specified in terms of robot positions relative to the forma-
tion center, in an upwind - crosswind frame, coupled with the wind direction. This
allows the entire formation to rotate and align to the wind. Throughout this paper,
we use the terms forward and backward to refer to the nodes respectively upwind
and downwind in the desired formation. The definition of left and right of center
follows naturally. The reference formation shape, as well as the relative position of
each robot in it, are defined a priori and known by all robots – therefore, robots are
able to independently determine which should be treated as left or forward of center.

The controller consists of a minimal set of independent behaviors: formation
keeping, which drives and maintains the robots in the desired formation, upwind
movement, which moves robots upwind to the source, and plume centering, which
keeps the overall formation centered on the plume. Each behavior outputs a desired
velocity vector, which are then combined and transformed into a control signal.
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Control is distributed and asynchronous, and no supervisory information or in-
tervention is assumed; additionally, there is no absolute positioning. Consequently,
the controller operates on a local frame, in which the y axis is aligned with the
robot front, pointing forward, and the x axis points 90 ◦ anticlockwise. Given the
short inter-distances involved, we consider that all robots are within communication
range. Nevertheless, data exchange is minimized, and the only information explicitly
exchanged among the robots is the most current odor measurement.

Each behavior is described in detail in the subsequent sections. As control laws are
formulated locally and homogeneous across all robots, the subscript self-identifying
the node is omitted except where otherwise noted.

2.1 Sensing

Wind and odor are assumed to be measured by the sensors introduced in [17], where
they are fully described. No extensive discussion of the sensor characteristics will
be done in this section, as experiments took place using simulation equivalents, for
which the errors models are provided in the evaluation section.

Wind measurements are provided by a custom board featuring six NTC thermistors
inside individual 3D printed tubes arranged in a star shape. As wind measurements are
affected by significant noise, a discrete scalar Kalman filter is used to obtain a better
estimate of the relative wind direction. The wind observations are complemented by
odometry information from the wheel encoders, compensating for the rotation of the
robot. We consider the wind angle θ to be zero when the robot is facing the wind.

For the odor measurements, a MiCS-5521 VOC sensor is used, with a gas pump
ensuring continuous flow. The sensor provides noisy quantized measurements, in
the 0-1000 range. The odor readings are broadcast by each robot, along with its
identification. Each robot stores the latest concentration received from every team
mate, c j, and uses it to update three values, used in the algorithm to influence the
formation geometry and movement:

• cc, the concentration measured by the center robot(s)
• cl , the mean of concentrations measured by robots left of the formation center
• cr, the mean of concentrations measured by robots right of the formation center

Finally, relative positions between the robots are provided by an extension board
equipped with sixteen LEDs, allowing the robot to obtain the range, bearing and ID
of each neighbor in line of sight [25].

2.2 Laplacian feedback

Our formation can be expressed as an undirected graph G = (V,E), in which vertices
V correspond to robots and edges E correspond to inter-robot relative positioning
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links, or a subset thereof. From this, we can use the work in [22] and standard results
in graph theory to attain a provably stable solution to the formation control problem:

ẋ =−(L ⊗ I2)(x−b) (1)

where L = BBT is the positive-semidefinite Laplacian matrix, obtained from the
incidence matrix B that describes the edges of G. The (x,y) absolute position vector
for all robots is given by x, and the desired offsets to the formation centroid are given
by the bias vector b. As stated above, the law is only applicable under the assumptions
of holonomicity, absolute positioning, and full connectivity maintenance.

The same approach can, however, be implemented in a decentralized fashion and
using only relative positioning information, assuming a connected but not necessarily
complete graph, and accounting for nonholonomicity either natively or by offloading
to a lower level controller [6]. As previously discussed, we want the formation to be
oriented with respect to the wind, requiring the rotation of the bias vectors by the
measured wind speed θ . The resulting velocity vector for formation control is

uf =−


N
∑
j=0

L j

(
x j−β x

j

)
N
∑
j=0

L j

(
y j−β

y
j

)
 (2)

where L j = Li, j is the entry of the Laplacian matrix relating the controlled node i to
neighbor j, x j and y j are the relative positions to robot j in the body frame, and β j is
a local analogue to b, describing the desired relative position between the two robots
in the robot frame, i.e. β j = R(θi)[p̄j− p̄i], pi and p j expressed in the wind/formation
frame. We do not consider role assignment in this work, and so the position of each
robot in the formation is defined by its ID.

2.3 Dynamic spacing

Depending on the size and growth rate of the odor plume, a fixed formation might
not be an optimal choice. Therefore, we implement a method to change the formation
spacing by varying the bias vector as a function of the measurements.

For simplicity, we define two scalar parameters, scw and suw, which represent adap-
tive bias coefficients in the crosswind and upwind direction, respectively. Assuming
biases (and, hence, the formation) are symmetric, this results in a minor modification.
Equation (2) remains valid, but β j assumes a new formulation:

β j = R(θi)

[
scw 0
0 suw

]
[p̄j− p̄i] (3)

In the remainder of the paper, we choose to use a constant upwind scaling factor,
and continuously vary the crosswind scaling according to (4). The underlying ratio-
nale is that, at our evaluation scale, the differences in the plume structure are more
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pronounced in the crosswind direction. The scaling methods may, however, be easily
modified to adapt to different realities.

scw = kcw
cl + cr

1+ cc
(4)

Proper limits need to be set to account for the minimum safe distance and the
maximum communication/movement range. We have tuned kcw to approximately
maintain the side robots on the detectable edges of the plume, for both the considered
line and rectangular formations; values between 0.5 and 1.0 appear to yield reason-
able results. However, the distribution of robots in the plume depends on its aspect
ratio, strongly influenced by wind speed and other factors mediating odor dispersal.

2.4 Upwind movement and centering

While in the plume, robots should move upwind in the presumed direction of the
source. Therefore, a movement urge in the direction of the apparent wind is defined:

uw = R(θ)
[

0
1

]
(5)

We want to keep the formation centered in the plume, which is achieved by adding
a crosswind force depending on the difference between cl and cr, the aforementioned
means of the odor readings to the left and right of the formation center. To prevent
extreme variations in control outputs due to the wide amplitude of odor measurement
variations, we implement a logistic response given by

uc = R(θ)

[
1

1+e−(cl−cr)/kl
−0.5

0

]
(6)

The value of kl should be approximately of the same dimension as the range of
the sensor. In our experiments, kl = 200. This asymptotically limits the maximum
requested crosswind velocity to ±0.5, a value that is only approached for highly
asymmetric odor readings.

2.5 Behavior aggregation

We combine the requested velocity vectors of each behavior with a weighted sum

u = kwuw + kcuc + k f uf (7)

At this stage, constant weights kw = kc = k f = 1 are used. For the particular
functions described above, this yields
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u =−


N
∑
j=0

L j

(
x j−β x

j

)
N
∑
j=0

L j

(
y j−β

y
j

)
+R(θ)

[
1

1+e−(cl−cr)/kl
−0.5

1

]
(8)

where β j is given by (3). The resulting vector u =
[
ux uy

]T is then used to determine
the requested (dimensionless) linear and angular velocities using simple proportional
controllers (9) and (10), limited to forward movement and saturated a reasonable
maximum within the operating range. These are passed to a motion controller that
computes the actual control signals.

v = kvuy 0≤ v≤ vmax (9)
ω = kω ux −ωmax ≤ ω ≤ ωmax (10)

3 Evaluation

To validate and evaluate the performance of our solution, we use a simulated equiva-
lent of our real world wind tunnel, robots and related sensors. It is built around Webots
[23], a submicroscopic robotics simulator, configured and calibrated to approximate
real world behavior [17].

3.1 Setup

The simulation arena, shown in Fig. 2, is a 20m×4m plane. The robots start around
14 m downwind (depending on the exact starting formation), and the source is placed
at the 1 m mark, centered.

Fig. 2 Simulation setup, with the source on the right and robots starting on the left. The plume
is shown in blue, and consists of filaments with growth rate γ = 4×10−7 m2 s−1. The wind flows
right-to-left. For ease of visualization, the filaments are drawn enlarged.

Odor propagation is modeled using filaments, and the wind flow is constant. We
use the built-in model of the Khepera III, and the wind, odor and range and bearing
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mechanisms are based on those available to the real robots [18]. Details of the wind
and odor simulations are provided in the following subsections. Relative positioning,
in the form of range and bearing measurements, is provided to the robots with angular
error of 0.1 rad and range error of 10% of the distance, and is locally converted to
x− y coordinates.

Our simulation environment does not presently handle occlusion and always
provides the range and bearing to every other robot. This is a significant limitation
in the case of line formations, where occlusions are the norm. We compensate by
designing the graph so that a robot only considers its two nearest neighbors in the
desired formation (or just the nearest, for robots at the ends). As measurements
are noisy, considering fewer neighbors leads to a less stable formation, and so our
simulation underestimates expected real-world formation control performance. It
also hinders the built-in collision avoidance mechanism, a problem not addressed in
this work. Source declaration is outside the scope of this paper, so simulations are
terminated by an external supervisor when the robots are in the vicinity of the source.

No attempt was made to maximize the robot movement speed and, consequently,
minimize the mission completion time. Instead, the target speed is defined by the low-
level translation of |uw|= 1 into wheel speeds, and is of approximately 7cm s−1. The
simulation step is of 32 ms. Communication is assumed perfect, although moderate
packet loss can be tolerated with no substantial impact.

3.1.1 Wind simulation and sensing

A constant wind field of 1m s−1 was used, simulating laminar flow. The wind sensor
provides noisy wind velocity measurements, resulting of the sum of the (x,y,z) wind
velocity at the position of the robot (w) with a vector of three independent Gaussian
random variables, N(0,σ2

a ).
As the wind field is constant, the magnitude of w is also constant and only its

orientation changes. The standard deviation of the Gaussian noise is set to σa =
0.1m s−1. This differs from the noise distribution of the real sensor, for which the
experimentally determined distribution of the direction noise is N(0,σ2

d ), σd = 4 ◦.

3.1.2 Odor simulation and sensing

The odor propagation implementation is based on the the filament-based model
proposed by Farrell et al. [7], and generates an intermittent plume similar to the one
observed in the wind tunnel. Odor is simulated as a set of filaments (i = 0, ...,N),
each containing a constant amount s = 8.3× 109 of molecules. Each filament is
defined by its (x,y,z) position pi,t , and its width wi,t .

At each time step, the position of a filament is updated according to the wind flow
and a stochastic process vp, consisting of a vector of three independent Gaussian
random variables, N(0,σ2

p), with σp = 0.1m. Molecular dispersion is modeled by
having the filament width increase with time while the peak concentration decreases.
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pi,t+∆ t = pi,t +a(pi,t)∆ t +vp (11)

wi,t+∆ t = wi,t +
γ

2wi,t
(12)

The filament dispersion rate approximating the wind tunnel conditions was previ-
ously determined to be γ = 4×10−7. The virtual odor source releases 100 filaments
per second with an initial width of wi,0 = 10 cm and initial position distributed over
the circular area of the source. The odor concentration at time t and position p is the
sum of the concentration contribution of all filaments, which decays exponentially
with the increasing distance to the center of a filament

ct(p) =
N

∑
i=0

s
w3

i,t
exp

(
−
|p−pi,t |

w2
i,t

)
(13)

No noise is added to the measured concentration as the chemical-to-electrical
transduction noisy was observed to be negligible on the real platform [17]. The
samples are run through a sliding window filter, which outputs the highest amongst
the 50 most recent readings; in our simulation, this corresponds to a window of 1.6 s.
This serves the dual purpose of emulating the approximately 1 s recovery time of the
physical sensor and of adding additional noise filtering.

3.2 Results

Experiments were run for multiple formation shapes in distinct plume conditions.
We provide the results for two illustrative formations: a three-robot line formation,
and a five-robot rectangular formation. The results presented here are the product of
single simulations, but representative of what was observed in multiple runs.

3.2.1 Line formation

The first simulation was run using a three-robot linear formation, oriented along
the crosswind axis, corresponding to predefined biases bupwind =

[
0 0 0

]T and
bcrosswind =

[
1 0 −1

]T . This simulation uses a high filament growth rate γ =

10−3 m2 s−1 to better highlight the adaptive formation spacing. For the same reason,
the robots start centered on the plume, in close proximity - this is not a requirement,
and the next section presents simulations with off-center starting positions.

Figure 3 shows the trajectories negotiated by the three robots over a total time
of 180 s, overlapped with a snapshot of the simulation environment at an arbitrary
time. According to the odor concentrations measured, robots begin by widening the
formation and then successfully trace the limits of the plume to its source. At this
scale, the trajectories appear smooth, with no major disturbances.
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Fig. 3 Robot trajectories for a three-robot line formation in a plume with filament growth rate
γ = 10−3 m2 s−1. Black lines connect the robot positions at intervals of approximately 35 s.

In fact, looking at the control signals in Fig. 4, we can see that the controller is
very stable in the angular speed ω , but less so in the linear speed v, which shows a
standard deviation σ = 0.0762.

Fig. 4 Control outputs v and ω for the center robot. Both are dimensionless quantities, converted
by a low level controller into the actual linear and angular speeds. The robots were parked waiting
for the first nonzero odor measurements for the first 11 seconds.

Closer analysis of the results shows that, in spite of the noisy wind and odor
measurements, the dominating noise present in the control outputs is introduced by
the formation control, a consequence of errors in the relative positions received from
the range and bearing module. Improvements could be realized by introducing a
Bayesian filter for neighbor tracking, and even further by broadcasting the control
outputs and wind direction estimate of each vehicle and using them to better predict
future relative positions. However, the fast rate of the sensor allows us to obtain good
results even in the absence of more involved strategies.

Given the central role the wind direction takes in our control law, measurement
error can have a significant impact on the performance. Figure 5 shows the wind
direction measurements along the complete trajectory, as well as the Kalman filter
estimate of the true wind direction, a considerable improvement over the raw data.

Finally, we illustrate our statements about the intermittency of the odor plume
with the recorded odor measurements from robots 1 (left) and 2 (center) in Fig. 6.
While the center robot reports higher odor readings, both series show high frequency
and high amplitude variation. The 50-slot sliding window maximum filter helps
obtain more relevant readings, but even its output is highly noisy. Nevertheless, the
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Fig. 5 Wind measurements z and Kalman estimate θ of the wind direction, relative to the front of
the center robot.

logistic response in centering and relatively limited changes in formation spacing are
able to minimize the impact of these variations.

Fig. 6 Odor measurements for robots 1 (left) and 2 (center). The red lines show the instant odor
measurements, and the black lines a sliding window maximum filtering. Note the different scales.

3.2.2 Rectangular formation

The rectangular formation is composed of five robots: four on the vertices and
one in the center of the rear edge. This corresponds to predefined biases bupwind =[
0 1 0 1 0

]T and bcrosswind =
[
1 1 0 −1 −1

]T . An image of the formation is pro-
vided in Fig. 7. The robots start in two clusters on the sides of the tunnel, to showcase
the plume centering and formation control capabilities. Each robot is connected to
the two closest neighbors along the perimeter of the formation.

In contrast to the line formation, this one introduces spatial diversity in the upwind
direction. Robots along the same upwind line are able to average their readings, in
order to provide the aggregate measurement cl and cr, less affected by individual
odor packets. Figure 8 shows a 60-second plot of the readings obtained by the two
robots on the left edge of the rectangle, and the resulting mean value, used as input
to the controller. An additional benefit of upwind diversity, unexplored in this paper,
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Fig. 7 Square formation. The green lines over the robots represent instant wind velocity measure-
ments.

is the possibility of using comparatively simple formation-based source declaration
mechanisms.

Fig. 8 Max-filtered odor measurements for robots 1 (left, back) and 2 (left, front), and resulting
mean.

The trajectories followed by the robots are presented in Fig. 9. The robots converge
to the desired formation and plume center in the first 30 s, and continue upwind along
the target trajectory. This simulation was run with the standard filament growth rate,
therefore no change in plume width is observable in this short distance.

Fig. 9 Robot trajectories for a square formation in a plume with growth rate γ = 4× 10−7. The
trajectories of the forward robots are traced in blue, and those of the backward robots are traced in
red. Black lines connect the robot positions at intervals of approximately 35 s.
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4 Conclusions

This paper presented a formation-based controller for odor plume tracing, which
uses multiple cooperating robots to trace a chemical plume to its source in laminar
flow conditions. Formation control is based on Laplacian feedback and is capable of
stabilizing arbitrary shapes. The formation geometry is adjusted over time to better
envelope the plume, while movement is an aggregation of upwind movement and
crosswind alignment.

Simulations were performed to validate the performance of the algorithm, using
both a three-robot linear formation and a five-robot rectangular formation. The
experiments show that the algorithm can cope with noisy readings of wind direction,
odor intensity and relative positions and that, after converging to the desired positions,
the robots nicely move along the centerline of the plume, tracking it to the source.

In the future, we plan to move from simulation to real-world experiments in
our wind tunnel, possibly introducing Bayesian filtering on the relative positions.
Afterwards, we will continue this work by further exploring the impact of different
formation shapes and wind conditions through systematic experimentation.

Acknowledgements This work was partially funded by project PEst-OE/EEI/LA0009/2013 and
grant SFRH/BD/51073/2010 from Fundação para a Ciência e Tecnologia. We sincerely thank Ali
Marjovi at DISAL for the detailed and constructive comments.

References

1. Cabrita, G., Marques, L., Gazi, V.: Virtual cancelation plume for multiple odor source localiza-
tion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5552–5558
(2013). DOI 10.1109/IROS.2013.6697161

2. Cao, M.L., Meng, Q.H., Wang, X.W., Luo, B., Zeng, M., Li, W.: Localization of multi-
ple odor sources via selective olfaction and adapted ant colony optimization algorithm. In:
IEEE International Conference on Robotics and Biomimetics, pp. 1222–1227 (2013). DOI
10.1109/ROBIO.2013.6739631

3. de Croon, G., O’Connor, L., Nicol, C., Izzo, D.: Evolutionary robotics approach to odor source
localization. Neurocomputing 121, 481–497 (2013). DOI 10.1016/j.neucom.2013.05.028

4. Dhariwal, A., Sukhatme, G., Requicha, A.: Bacterium-inspired robots for environmental moni-
toring. In: IEEE International Conference on Robotics and Automation, pp. 1436–1443 (2004).
DOI 10.1109/ROBOT.2004.1308026

5. Distante, C., Indiveri, G., Reina, G.: An application of mobile robotics for olfactory monitoring
of hazardous industrial sites. Industrial Robot: An International Journal 36(1), 51–59 (2009).
DOI 10.1108/01439910910924675

6. Falconi, R., Gowal, S., Martinoli, A.: Graph based distributed control of non-holonomic
vehicles endowed with local positioning information engaged in escorting missions. In:
IEEE International Conference on Robotics and Automation, pp. 3207–3214 (2010). DOI
10.1109/ROBOT.2010.5509139

7. Farrell, J.A., Murlis, J., Long, X., Li, W., Cardé, R.T.: Filament-Based Atmospheric Dispersion
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