
Enriching Kademlia by Partitioning

João Monteiro, Pedro Ákos Costa, João Leitão
NOVA LINCS & DI/FCT/NOVA University of Lisbon,

Lisboa, Portugal
jmp.monteiro@campus.fct.unl.pt pah.costa@campus.fct.unl.pt

jc.leitao@fct.unl.pt

Alfonso de la Rocha
Protocol Labs,

alfonso@protocol.ai

Yiannis Psaras
Protocol Labs,

yiannis@protocol.ai

Abstract

Decentralizing the Web is becoming an increasingly interesting endeavor that aims
at improving user security and privacy as well as providing guaranteed ownership of
content. One such endeavor that pushes towards this reality, is Protocol Labs’ Inter-
Planetary File System (IPFS) network, that provides a decentralized large scale file
system to support the decentralized Web. To achieve this, the IPFS network leverages
the Kademlia DHT to route and store pointers to content stored by network members
(i.e., peers). However, due to the large number of network peers, content, and accesses,
the DHT routing needs to be efficient and quick to enable a decentralized web that is
competitive.

In this paper, we present work in progress that aims at improving the Kademlia
DHT performance through the manipulation of DHT identifiers by adding prefixes to
identifiers. With this, we are able to bias the DHT topological organization towards
locality (which can be either geographical or applicational), which creates partitions in
the DHT and enables faster and more efficient query resolution on local content. We
designed prototypes that implement our proposal, and performed a first evaluation of
our work in an emulated network testbed composed of 5000 nodes. Our results show
that our proposal can benefit the DHT look up on data with locality with minimal
overhead.

1 Introduction

With the popularization of blockchain technology [28, 32] there has been an increased in-
terested in peer-to-peer technology as a way to realize a novel decentralized web vision [1].
The decentralized web aims at decentralizing control from centralized infrastructures and
entities (i.e., the cloud and its providers) towards end-users. Protocol Labs1 has been push-

1https://protocol.ai

1

ing this endeavor with products such as IPFS [3] and FileCoin [4], that aim at building a
large community of users on a large scale decentralized network that share content and build
distributed applications.

In this paper, we are interested in the IPFS network in particular. IPFS is a community
driven peer-to-peer distributed file system that aims to connect computing devices through
a shared file system. Currently, IPFS hosts a multitude of content, that ranges from full web
sites, such as Wikipedia, to images and other user public files. To support the operation of
IPFS, a distributed hash table (DHT) – Kademlia [17] – is used to locate and store content
pointers within the IPFS network. To this end, peers and content are encoded with an
immutable identifier that Kademlia leverages to organize peers and store and find content.

The Kademlia DHT is widely popular, having been previously employed in BitTorrent [5]
however, in the context of IPFS, content resolution (i.e., locating and retrieving content)
can be extremely slow, sometimes even reaching latencies higher than 2, 5 hours [6]. The
reasons for this phenomenon are still being investigated by the IPFS team and collaborators.
Nevertheless, one possible reason can be due to a known challenge of peer-to-peer overlay
networks – topology mismatch [14, 24]. Topology mismatch occurs when the topological
organization of peers does not match the physical network topology, generating logical paths
among peers that are suboptimal at the physical layer. This challenge can easily lead to
higher resolution latencies in DHTs [23], as DHTs organize peers based on their identifiers,
which are generated from a uniform distribution (e.g., a SHA-256 of the IP and Port of the
peer) that does not encode any locality property (e.g., geo-location of the peer, applications
that the peer runs, etc).

To address this challenge, in this paper we aim at presenting effective solutions that will
incur in minimal operational overhead in modifications to IPFS. To this end, we present and
evaluate a scheme to bias the DHT topology towards locality. In more detail, our scheme
is rooted on the idea that by adding prefixes to the DHT identifier, one can organize peers
that have the same prefix closely in the DHT, enabling faster resolutions for local content.
The prefix can encode geographical regions, applications, or any other arbitrary proximity
criteria among peers. Leveraging this insight, we present two solutions that partition the
Kademlia DHT based on identifier prefixes. We present a first solution that creates virtual
partitions in the DHT by adding the prefix to the identifier without further modifications to
the Kademlia protocol. We name this scheme Soft Partitioning. The second solution creates
physical partitions in the DHT, having nodes of each prefix participating in a segregated
DHT. To enable communication among nodes across different prefix domains, our scheme
leverages an additional protocol that stores and retrieves contact points for each known
prefix (i.e., sub DHT). We name this scheme Hard Partitioning. Our preliminary evaluation
shows that both schemes can achieve faster content resolution on data that presents locality
(i.e., belongs to the same prefix/region/application) without adding significant overhead to
the remainder of queries of the system.

The remainder of this paper is organized as follows: Section 2 discusses techniques to
perform DHT topological optimizations; Section 3 presents our solutions in more detail; Sec-
tion 4 details our experimental work, that leverages an emulated network testbed composed
of 5000 peers; and finally, Section 5 concludes the paper with future directions.

2

2 Related Work

Distributed Hash Tables (DHTs) are crucial for the operation of large scale systems, specially
for the ones that require users to find each other. A DHT, in short, provides a decentralized
method of mapping an identifier (of a resource) to one or more nodes in the network. This
resource is information that is stored by some peer(s) in the network. To enable this, DHT
protocols build a structured overlay network on top of a logical key space that allows to find
any key (i.e., identifier) by using application-level routing mechanisms. Examples of DHTs
include, Chord [27] that operates with a consistent hashing [12] mechanism; Tapestry [30]
and Pastry [26] that leverage a Plaxton Mesh [21] key space and routing system; SkipNet [10]
that uses two different key spaces that are ordered lexicographically; and Kademlia [17], the
protocol we are interested in this paper, that uses the XOR distance of keys for routing.
However, in the operation of these protocols, keys are attributed based on a uniformly
random distribution (e.g., the hash of an IP address), which does not encode any type of
locality. Previous works have addressed this. These works can be divided in three categories:
i) Peer Selection; ii) Coordinate System Transformation; and iii) Identifier Manipulation.

Peer Selection. To enable routing in a DHT, each peer keeps information about other
peers with properties that usually encode logarithmic jumps in the DHT key space (i.e., each
hop among peers should cut the distance to a target in half). However, the peers stored
locally can be suboptimal due to physical network constraints, and thus lead to high latencies
when routing requests. Because DHTs are designed to accommodate large numbers of peers
in the system, there are multiple peers that can provide (close to) logarithmic jumps in the
DHT. Peer selection means choosing a peer that optimizes this jump through some additional
property. The most common property to optimize is latency among peers, which was studied
in CAN [23] and Coral [7]. Both works present solutions to construct DHT topologies that
can be optimized towards latency among peers, by favoring to store information about lower
latency peers. However, to enable this, active latency measurements need to be done, which
can highly influence the network traffic volume. Furthermore, and due to latency being
a dynamic metric (i.e., it fluctuates over time), such techniques can generate unwanted
instabilities and be difficult to tune.

Coordinate System Transformation. Alternatively, other works such as GeoPeer [2], NL-
DHT [25], and Geodemlia [9], explore the transformation of an existing (physical) coordinate
system (e.g., GPS, logical Cartesian space) into a logical key space that can be leveraged
by a DHT protocol, that maintains the locality properties of the original coordinate system.
In the case of GeoPeer, peers leverage the original coordinate system to organize themselves
towards locality based on delaunay triangulations [15]. NL-DHT, on the other hand, propose
the use of a modified Hilbert curve [18] method to transform a three dimensional space, that
represents the location of a peer in a geographic space, into a single dimension DHT key
space. Geodemlia follows a simpler approach, encoding the geographic space in a circle,
and dividing the circle into regions. The management of these regions is similar to that
of Kademlia. Unfortunately, these techniques can become highly limiting and complex, as
only a single locality property can be encoded that depends on a physical global coordinate
system.

Identifier Manipulation. Lastly, works such as Globase.KOM [13], LDHT [29], and the
works presented in [31] and [11], focus on manipulating peer and resource identifiers (i.e.,

3

DHT keys). These works separate the key in two parts, a global and a local part. Usually, the
global part is encoded by the most significant bits of the key, can vary in length, and is used
to encode a geographical region. The local part of the key identifies the peer and is a unique
identifier generated randomly. In the case of Globase.KOM, peers organize themselves in a
hierarchical tree structure. In this solution, interior peers (of the tree) are representatives
of the geographic region, and are identified by a key that encodes a global identifier and a
local identifier. Leaf peers (of the tree) are only identified by a local identifier. In LDHT
all peers are identified by a key with a global and a local part. The global part is based on
the Autonomous System Network (ASN) of the peer, while the local part is based on the IP
address of the peer. In [31] the authors propose to have the global part of the key encode
multiple encompassing geographical regions (in a hierarchy). In [11] the authors propose the
use of landmark nodes, that do not participate in the DHT, to compute the global part of
keys. The techniques used in these solution share the same insights as the ones employed by
our approach, however, these solutions mostly consider geographical information and strict
key designs. Our mechanisms, although similar in concept, is more general and flexible, and
thus easier to integrate in the IPFS system.

Our mechanisms group nodes that share the most significant bits of their identifiers by
adding prefixes that encode some locality property (geographical or applicational). There
are adjacent works that also group peers that share some property. This is the case of the
work in [8] that proposes an algorithm for peers to self organize according to some order.
Furthermore, the works in [16] and [19] build DHTs with groups of peers that encode the
same interval in the DHT key space, mostly as a failover and load balancing mechanism.

3 Proposed Solution

Our proposals aim at improving the DHT resolution performance for queries with locality.
Locality here can mean geographic, applicational, and/or logical proximity. To this end, we
leverage ideas from previous work that performs identifier manipulation to bias the DHT
organization towards locality that is encoded in the identifier of peers and resources. As
such, we prepend to the keys used in the Kademlia DHT a prefix that encodes locality. Due
to the natural operation of Kademlia, and the way peers are organized among themselves,
by prepending locality identifiers, peers organize themselves in groups that represent each
locality identifier. In the following, we present a brief description of the Kademlia protocol
to support the description of our two proposed solutions that bias Kademlia for locality:
Soft Partitioning and Hard Partitioning.

3.1 Kademlia

Kademlia operates over an m bit key space (in IPFS the value for m is the output length
of a SHA-256), and uses the XOR distance metric to order keys. Each peer holds a routing
table (named k-buckets) composed of multiple lists (or buckets), of fixed maximum size of k
(the value for k used in IPFS is 20). Each bucket holds peers that can decreasingly cut the
distance to a target in the DHT from the local peer. For example, bucket 0 holds peers that
can perform jumps that cover (i.e., cut the distance to a target in) half of the key space,

4

bucket 1 holds peers that can perform jumps that cover a quarter of the key space, and so
on. Peers are initialized with a single bucket that is divided once it gets full. Only the bucket
that covers the least amount of space (i.e., the last bucket) is divided. This means that a
peer will always know more peers which are closer in the key space.

Kademlia employs a generic method to locate resources in the DHT, having optimizations
for finding peers (FindNode operation) and stored values (FindValue operation). In short,
the method works as follows: for any arbitrary key, the peer contacts the k peers that it
knows of that are closest to the key. These peers will return the k peers that they known of
that are closest to the key. The original peer continues to contact the k closest peers to the
key gathered from the responses, until it has contacted all the closest peers or has found the
resource that is mapped by the key. Storing values in the DHT is similar. The operation
first finds the k closest peers to the to be stored key, and stores the value in those k peers.
Kademlia can be configured with two additional parameters that control the parallelism of
query resolution. These parameters are α, that controls how many parallel messages can be
sent when locating a key, and β, that controls how many responses the protocol has to wait
before performing the next round of messages for query resolution. In IPFS these values are
parameterized as: α = 10 and β = 3.

3.2 Sotf Partitioning

Our soft partitioning solution creates virtual partitions in the Kademlia DHT. This is a
consequence of adding the locality prefix to peer and content identifiers and due to how
the XOR distance metric in Kademlia operates. The addition of prefixes modify the XOR
distance of any two keys that do not share a prefix, making keys that do not share the same
prefix to always have higher distances between them than keys that share the prefix. This
causes Kademlia’s k-buckets to store more peers that share the prefix (as these are closer),
hence creating virtual partitions in the DHT, as peers that share the same prefix will have
more connections among them.

To store content with this scheme, the generated content identifier must also be prefixed.
To preserve locality, the content is prefixed with the prefix of the peer that publishes the
content. To find content, peers must also have knowledge of the content’s prefix. This
however, is a process that occurs out-of-band and is not a concern of the protocol.

3.3 Hard Partitioning

The hard partitioning solution takes the locality concept a step further by creating physical
partitions in the Kademlia DHT, effectively dividing the original DHT into smaller disjoint
DHTs, each encoded/indexed by a different locality prefix. This allows for smaller average
number of hops to be needed to route queries with locality (i.e., queries for resources that
share the prefix of the peer performing the query). For non-local queries (i.e., to resource
that do not share the prefix of the peer performing the query) an external service to the
DHT is used. We dubbed this service the indexer service that maps prefixes to a list of
peers that have that prefix. This allows peers to find contact points for other prefixes in
other DHTs. The indexer service can be implemented in a centralized way, having a single
instance know all contact points, or in a decentralized way, where multiple instances know

5

different contact points. The indexer service is updated by having peers contact the service
periodically and with a configurable probability.

To avoid having peers constantly contacting the indexer service, peers maintain a small
cache with contacts of frequently queried partitions (i.e., frequently contacted DHTs with
different prefixes). As such, anytime a peer performs a query to a remote partition, it firsts
tries to use the contacts it has in its cache. If these fail to respond, the peer contacts the
indexer service for more contact points. Contacts are evicted from cache when they fail to
respond or after configurable time-to-live (TTL) expires.

In this scheme, content is only stored in the local partition, as it is expected to be accessed
mostly by peers in the local partition. However, if some content becomes overly popular,
it can be replicated to other partitions. Nevertheless, in IPFS, we expect these to happen
mostly by republishing the content in a different partition.

3.4 Discussion

In this work we study the impact of these two solutions over the base Kademlia protocol.
Both solutions aim at improving Kademlia’s query resolution for access patterns with locality.
The soft partitioning solution is a solution that can be easily integrated with IPFS by simply
changing peer and content identifiers to also encode locality properties and enabling peers
and applications to leverage locality identifiers on the DHT. On the other hand, the hard
partitioning solution requires a larger integration effort with IPFS, as the DHT protocol
requires modifications and a new service (the indexer service) has to be developed and
deployed. Nevertheless, the hard partitioning solutions provides an additional advantage by
enabling the creation of jumps over large gaps in the key spaces through contaict points to
remote partitions.

4 Evaluation

We have conducted an experimental evaluation of both our solutions. To this end, we have
implemented simple prototypes in the Go programing language of both our solutions and
the Kademlia protocol. The Kademlia protocol is implemented as per the description in the
original paper, using UDP communication. We have additionally used code in libp2p [22]
(that is also used to implement IPFS) that implements the XOR distance. Our solutions are
implemented by extending the Kademlia protocol prototype.

We execute our prototypes in a network of 5000 peers with emulated latencies among
them. This network was generated with the help of a graph analysis tool [20]. In this
network, peers that are close by have very low latency among them, and some peers that
are farther apart also have low latency among them. This network tries to emulate latencies
experienced in the Internet, where peers are expected to have low latency links to other peers
that are in the same ISP, and can occasionally have a low latency link to a peer outside their
ISP. After this, we calculated partitions of different sizes (3, 10, and 100) on the generated
network based on the proximity of peers in the network. Table 1 shows the properties of
the generated network and the calculated partition sizes. Note that the average latency

6

Table 1: Average network latency and partition sizes.

Graph Local (ms) Remote (ms)
Partition Size

Avg Min Max
3 Partitions 275.52 495.77 1667 1254 1519
10 Partitions 145.03 449.68 500 358 744
100 Partitions 43.82 418.26 50 26 102

decreases with the higher number of partitions as the partitions are smaller and are more
tighly packed in the network.

To effectively emulate the network we leverage Docker containers. We execute 100 Docker
containers spread evenly across 20 servers in the Grid5000 platform 2, each with an Intel
Xeon Gold 5220 CPU, with 18 cores, and 96 GiB of memory. Each container executes
50 independent instances of our prototypes. Each instance is identified by the IP of the
container and the assigned UDP port. Latencies are emulated with the Linux tc tool with a
rule for each pair of instances. In the following we discuss the performance evaluation with
this network.

4.1 Performance Evaluation

Our evaluation is centered on the average latency of FindNode and FindValue operations.
Furthermore, we configured all solutions with the following parameters: k = 5, α = 3, β = 2.
These values are substantially lower than those used in IPFS. This is due to the scale of our
emulation being smaller than the IPFS network (otherwise most queries would be resolved
on the first hops), and to operational limitations (to avoid overloading servers with too many
messages). In our experiments for the hard partitioning solution, we use a single indexer
service that is hosted by one of the peers of the network. The indexer service is configured to
hold five contacts for each partition, and peers are configured to update their contact entry
on the service every 20 seconds with a probability of 30%. Furthermore, hard partitioning
peers also cache 3 peers per partition that have been used with a TTL of 60 seconds.

Experiments run for an average of 10 minutes. The first 2 minutes of the experiment are
used as a grace period for all peers to join the network. In experiments with the FindNode
operation, peers perform 5 minutes for queries of a our workload. The remainder of the
time is used for queries to finish gracefully. In experiments with the FindValue operation,
each peer stores five values in the DHT and waits for another minute grace period. This is
followed by 5 minutes of queries of our workload, using the remainder of the time as before.
We perform experiments with fault-free scenarios and faulty scenarios. In the following
we present the results for each scenario. Results show the average of 3 repetitions of each
experiment.

Fault-Free Scenario In the Fault-Free scenario, we configure the percentage of queries
that are performed to the local partition of the peer. This is expressed through a probability
over a random number. Once it is decided if the query is to be performed over the local

2https://www.grid5000.fr/

7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Local Queries Percentage

0

2

4

6

8

10

La
te

nc
y

(s
)

Soft Partition
Kademlia
Hard Partition

(a) 3 Partitions.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Local Queries Percentage

0

2

4

6

8

10

La
te

nc
y

(s
)

Soft Partition
Kademlia
Hard Partition

(b) 10 Partitions.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Local Queries Percentage

0

2

4

6

8

10

La
te

nc
y

(s
)

Soft Partition
Kademlia
Hard Partition

(c) 100 Partitions.

Figure 1: Fault-Free scenarios average FindNode latency.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Local Queries Percentage

0

2

4

6

8

10

La
te

nc
y

(s
)

Soft Partition
Kademlia
Hard Partition

(a) 3 Partitions.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Local Queries Percentage

0

2

4

6

8

10

La
te

nc
y

(s
)

Soft Partition
Kademlia
Hard Partition

(b) 10 Partitions.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Local Queries Percentage

0

2

4

6

8

10

La
te

nc
y

(s
)

Soft Partition
Kademlia
Hard Partition

(c) 100 Partitions.

Figure 2: Fault-Free scenarios average FindValue latency.

partition or not, a random existing key is chosen that matches the previous decision. Figure 1
shows the results for the FindNode operation for networks with 3, 10, and 100 partitions.
Figure 2 shows the results for the FindValue operation for networks with 3, 10, and 100
partitions. In our experiments we varied the percentage of locality in queries as follows: 1%,
25%, 50%, 75%, 90%, and 95% (this is represented in the x axis of figures, while the y axis
represents the average latency of each operation).

The results presented in Figure 1 show that both solutions improve the average query
resolution of Kademlia when the queries present locality accesses. As expected, query pat-
terns with higher locality present higher improvements in our solutions. Furthermore, our
solutions also benefit from higher number of partitions. This is due to creating smaller par-
titions and hence routing in these smaller partitions is faster. Another thing to note, is that
the hard partition solution only presents a slight advantage over the soft partition solution
with higher numbers of partitions. We believe this to be a consequence of the high latency
of contacting the single instance of the indexer service. With more partitions, this effect is
attenuated by the fact that partitions are very small (50 peers) and queries are resolved in
fewer hops than in the soft partitioning solutions.

The results presented in Figure 2 are similar for all solutions, where the most significant
difference is that all solutions experience higher latency. This is because the FindValue
operations, operates similarly to the FindNode operation, with the addition that peers
perform an additional interaction to effectively fetch the stored content. These results show
that our solutions has a minimal impact over the DHT operation, other than providing an
advantage when queries have locality.

8

100 200 300 400 500
Time(s)

60

65

70

75

80

85

90

95

100

Su
cc

es
s R

at
e

%

Kademlia
Soft Partition
Hard Partition

(a) 10 partitions.

100 200 300 400 500
Time(s)

60

65

70

75

80

85

90

95

100

Su
cc

es
s R

at
e

%

Kademlia
Soft Partition
Hard Partition

(b) 100 partitions.

Figure 3: Faulty scenarios FindNode succaess rate with 30% instant failure.

Faulty Scenarios In these set of experiments, we fix the probability of locality to 50% of
our workload and execute the FindNode operation in networks with 10 and 100 partitions.
Furthermore, we generate a simultaneous peer fault of 30% of the network after a period of
2 minutes in the experiment (after the initial grace period). Figure 3 shows the results for
these experiments. In these experiments we measure the success rate (in the y axis) over
time (in the x axis) of queries.

These results show that all solutions, for low numbers of partitions (Fig. 3a) have similar
fault tolerance, with the soft partition solution being the most affected by the failure of peers.
With higher numbers of partitions (Fig. 3b), the hard partition solution has significantly
more fault tolerance than the competing alternatives. This is due to the fact that the failure
has less impact on the smaller DHTs as these smaller DHTs are more connected (i.e., peers
have more connections among themselves), and that finding remote content (i.e., that is
not on the local partition) is done primarily via the indexer service. It is also important
to note that the operation of the hard partition is highly dependent on the indexer service,
which as a single instance, is a single point of failure. However, the indexer service can be
easily materialized by more than one (independent) instances with virtually no coordination
among them.

5 Conclusion and Future Work

In this paper we have presented two solutions capable of improving the performance of
Kademlia for DHT query patterns that present locality, without incurring in a strong oper-
ational overhead. Our soft partitioning solution is capable of influencing the routing table
maintained by each peer to encode locality, and hence improve the DHT query routing on
queries that exhibit locality. The hard partitioning solution on the other hand, presents
interesting properties such as the fact of enabling jumping large portions of the DHT, effec-
tively creating larger shortcuts, and hence further improving the DHT performance when a
large number of partitions are present in the network.

The work presented in this paper is still work in-progress, and we aim at following these
first findings to further improve these solutions. In particular, we aim at improving the soft
partition solution with caching of peer contacts as employed by the hard partition solution, to
enable larger shortcuts on the soft partition solution. Regarding the hard partition solution,
the indexer service has a large design space worth exploring to remove the single point of

9

failure and improve the latency required to contact the service. Furthermore, we plan to
continue the evaluation of these solutions with different setups and by using data extracted
from the operation of the IPFS network, to fully understand the impact that our solutions
can have in a real system such as the IPFS network.

References

[1] Web 3.0 technology stack. https://web3.foundation/about/. Accessed July 2021.

[2] F. Araujo and L. Rodrigues. Geopeer: a location-aware peer-to-peer system. In Third
IEEE International Symposium on Network Computing and Applications, 2004. (NCA
2004). Proceedings., pages 39–46, 2004.

[3] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System. Technical Report
Draft 3, 2014.

[4] Juan Benet and Nicola Greco. Filecoin: A Decentralized Storage Network. Technical
report, 2017.

[5] Bram Cohen. The bittorrent protocol specification.

[6] ConsenSys. Consensys: Ipfs look up measurement. https://github.com/ConsenSys/

ipfs-lookup-measurement/. Accessed February 2022.

[7] Michael J Freedman and David Mazieres. Sloppy hashing and self-organizing clusters.
In International Workshop on Peer-to-Peer Systems. Springer, 2003.

[8] Vincent Gramoli, Ymir Vigfusson, Ken Birman, Anne-Marie Kermarrec, and Rob-
bert van Renesse. Slicing distributed systems. IEEE Transactions on Computers,
58(11):1444–1455, 2009.

[9] Christian Gross, Dominik Stingl, Björn Richerzhagen, Andreas Hemel, Ralf Steinmetz,
and David Hausheer. Geodemlia: A robust peer-to-peer overlay supporting location-
based search. In 2012 IEEE 12th International Conference on Peer-to-Peer Computing
(P2P), pages 25–36, 2012.

[10] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec
Wolman. SkipNet: A scalable overlay network with practical locality properties. In 4th
USENIX Symposium on Internet Technologies and Systems (USITS 03), Seattle, WA,
March 2003. USENIX Association.

[11] Yahya Hassanzadeh-Nazarabadi, Alptekin Küpçü, and Öznur Özkasap. Decentralized
and locality aware replication method for dht-based p2p storage systems. Future Gen-
eration Computer Systems, 84:32–46, 2018.

[12] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In Proceedings of the 29 Annual ACM

10

Symposium on Theory of Computing, STOC ’97, page 654–663, New York, NY, USA,
1997. ACM.

[13] A. Kovacevic, N. Liebau, and R. Steinmetz. Globase.kom - a p2p overlay for fully
retrievable location-based search. In 2007 7th International Conference on Peer-to-Peer
Computing, pages 87–96, Los Alamitos, CA, USA, sep 2007. IEEE Computer Society.

[14] João Leitão. Topology Management for Unstructured Overlay Networks. Phd thesis.

[15] J. Liebeherr, M. Nahas, and Weisheng Si. Application-layer multicasting with delaunay
triangulation overlays. IEEE Journal on Selected Areas in Communications, 20(8):1472–
1488, 2002.

[16] F. Maia, M. Matos, R. Vilaca, J. Pereira, R. Oliveira, and E. Riviere. Dataflasks:
Epidemic store for massive scale systems. In 2014 IEEE 33rd International Symposium
on Reliable Distributed Systems (SRDS), pages 79–88, Los Alamitos, CA, USA, oct
2014. IEEE Computer Society.

[17] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system
based on the xor metric. In International Workshop on Peer-to-Peer Systems. Springer,
2002.

[18] B. Moon, H.V. Jagadish, C. Faloutsos, and J.H. Saltz. Analysis of the clustering prop-
erties of the hilbert space-filling curve. IEEE Transactions on Knowledge and Data
Engineering, 13(1):124–141, 2001.

[19] J. Paiva, J. Leitão, and L. Rodrigues. Rollerchain: A dht for efficient replication. In
Procceedings of the 12th International Symposium on Network Computing and Applica-
tions, pages 17–24, Aug 2013.

[20] Tiago P. Peixoto. graph-tool: Efficient network analysis. https://graph-tool.

skewed.de. Accessed February 2022.

[21] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing nearby copies
of replicated objects in a distributed environment. In Proceedings of the Ninth Annual
ACM Symposium on Parallel Algorithms and Architectures, SPAA ’97, page 311–320,
New York, NY, USA, 1997. ACM.

[22] Protocol Labs. libp2p: A modular network stack. https://libp2p.io. Accessed
February 2022.

[23] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A
scalable content-addressable network. In Proceedings of the 2001 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communications,
SIGCOMM ’01, page 161–172, New York, NY, USA, 2001. ACM.

[24] Sylvia Ratnasamy, Ion Stoica, and Scott Shenker. Routing algorithms for dhts: Some
open questions. In International workshop on peer-to-peer systems. Springer, 2002.

11

[25] Saurabh Ratti, Behnoosh Hariri, and Shervin Shirmohammadi. Nl-dht: A non-uniform
locality sensitive dht architecture for massively multi-user virtual environment applica-
tions. In 2008 14th IEEE International Conference on Parallel and Distributed Systems,
pages 793–798, 2008.

[26] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. In Rachid Guerraoui, editor, Middle-
ware 2001, pages 329–350, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[27] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. SIGCOMM
Comput. Commun. Rev., 31(4), August 2001.

[28] Gavin Wood. Ethereum: a secure decentralised generalised transaction ledger. Technical
report, 2014.

[29] Weiyu Wu, Yang Chen, Xinyi Zhang, Xiaohui Shi, Lin Cong, Beixing Deng, and Xing
Li. Ldht: Locality-aware distributed hash tables. In 2008 International Conference on
Information Networking, pages 1–5, 2008.

[30] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and
John D. Kubiatowicz. Tapestry: A resilient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications, 22(1), 2004.

[31] Shuheng Zhou, Gregory R Ganger, and Peter Alfons Steenkiste. Location-based node
ids: Enabling explicit locality in dhts. Technical report, 2003.

[32] Guy Zyskind, Oz Nathan, and Alex ’Sandy’ Pentland. Decentralizing privacy: Using
blockchain to protect personal data. In 2015 IEEE Security and Privacy Workshops,
2015.

12

