Hierarchical Consensus: A Horizontal Scaling
Framework for Blockchains

Alfonso de la Rocha
Protocol Labs
alfonso @protocol.ai

IST Austria
ekokoris @ist.ac.at

Abstract—We present the Filecoin Hierarchical Consensus
framework, which aims to overcome the throughput challenges
of blockchain consensus by horizontally scaling the network.
Unlike traditional sharding designs, based on partitioning the
state of the network, our solution centers on the concept of
subnets —which are organized hierarchically— and can be spawned
on-demand to manage new state. Child subnets are firewalled
from parent subnets, have their own specific policies, and run
a different consensus algorithm, increasing the network capacity
and enabling new applications. Moreover, they benefit from the
security of parent subnets by periodically checkpointing state.
In this paper, we introduce the overall system architecture, our
detailed designs for cross-net transaction handling, and the open
questions that we are still exploring.

Index Terms—blockchain, consensus, distributed systems, P2P,
scalability, sharding

I. INTRODUCTION

Consensus, or establishing total order across transactions,
poses a major scalability bottleneck in blockchain networks
[1]. This is particularly the case when all nodes (often called
validators or miners) are required to process all transactions.
Regardless of the specific consensus protocol implementation
used, this makes blockchains unable to increase their perfor-
mance by adding more participants (scale-out).

In traditional distributed computing, one possible approach
to overcoming this limitation is to resort to the partitioning,
or sharding, of state processing and transaction ordering. In a
sharded system the blockchain stack is divided into different
groups called shards, each operated by its own set of nodes,
which keep a subset of the state and are responsible for
processing a part of the transactions sent to the system. In
existing sharded designs [2], [3], the system often acts as a
distributed controller that assigns miners to different shards
and attempts to load-balance the state evenly across shards.

The main challenge with applying traditional sharding to
the Byzantine fault-tolerant context of the blockchain lies in
the security/performance tradeoff. As miners are assigned to
shards, there is a danger of diluting security when compared
to the original single-chain (single-shard) solution. In both
proof-of-work and proof-of-stake (PoS) blockchains, sharding
may lead to the ability of the attacker to compromise a single
shard with only a fraction of the mining power, potentially
compromising the system as a whole. Such attacks are often
referred to as 1% attacks [2], [4]. To circumvent them, shard-
ing systems need to periodically reassign miners to shards

Lefteris Kokoris-Kogias

Marko Vukolié
Protocol Labs
marko @protocol.ai

Jorge M. Soares
Protocol Labs
jorge@protocol.ai

in an unpredictable way, so as to cope with a semi-dynamic
adversary [5], [6]. We believe that this traditional approach
to scaling, which considers the system as a monolith, is not
suitable for decentralized blockchains due to their complexity
and the fact that sharded systems reshuffle state without the
consent of its owners.

In our efforts to scale the Filecoin network [7], [8], we
depart from the traditional sharding approach to build hier-
archical consensus'. In hierarchical consensus, instead of al-
gorithmically assigning node membership and load balancing
the distribution of the state, we follow an approach where
users and miners are grouped into subnets in which they can
freely partake. Users can spawn new child subnets from the
one they are operating in accordance with their needs, and
become miners there if they fulfill all the requirements set
by the protocol. Each subnet can run its own independent
consensus algorithm and set its own security and performance
guarantees. Subnets in the system are organized hierarchically,
each having one parent subnet and any number of child subnets
— except for the root subnet (called root network or rootnet),
which has no parent and is the initial anchor of trust. To
circumvent the 1% attacks pertinent to traditional sharding,
subnets in hierarchical consensus are firewalled [9], in the
sense that a security violation in a given subnet is limited, in
effect, to that particular subnet and its children, with bounded
economic impact on its ancestors. This bounded impact of an
attack is, at most, the circulating supply of the parent token
in the child subnet. Moreover, ancestor subnets help secure
their descendant subnets through checkpointing—which helps
alleviate attacks on a child subnet, such as long-range and
related attacks in the case of a PoS-based subnet [10]. At a
high level, hierarchical consensus allows for incremental, on-
demand, blockchain scaling and simplifies deployment of new
use cases with clearly isolated security domains that provide
flexibility for varied use cases. Our design further supports
ordinary (e.g., token payment) and atomic transactions across
subnets.

This paper is organized as follows: Section II provides
a high-level overview of the system and its specifications;
Section III describes the life cycle of a subnet and its key
operations; Section IV explains the semantics for cross-subnet
transactions; finally, Section V surveys the related work and

Uhttps://github.com/filecoin-project/eudico/

Parallel
Checkpoint

—._ root / 102 / 102
(e
py
~ root / t02 / t01

\
j’ ()~~~

root / 101

Network Time

Fig. 1. System Overview. Subnets are spawned from the root chain, thereby
building a hierarchy of independent networks.

Section VI outlines conclusions and future directions.

II. SYSTEM OVERVIEW

Fig. 1 depicts a high-level overview of a hierarchical con-
sensus system. The system starts with a rootnet which, at
first, keeps the entire state and processes all the transaction
in the system (like present-day Filecoin). At one point, a
subset of users requiring lower latency or higher throughput
can spawn a new subnet to accommodate their performance
requirements. This subnet instantiates a new chain with its own
state, independent from the root chain, replicated among the
subset of participants of the overall system who are members
of the subnet. From this point on, the new subnet processes
transactions involving the state in the subnet independently
from the root chain. Further subnets can then be spawned from
any point in the hierarchy.

Subnets are able to interact with the state of other subnets
(and that of the rootnet) through cross-subnet (or, simply,
cross-net) messages. Full nodes in a given subnet have trusted
access to the state of its parent subnet. We implement this by
having nodes sync the chain of its parent (i.e., child subnet
nodes also run full nodes on the parent subnet). Miners on
parent subnets do not need to sync with child subnets’ chains.

In hierarchical consensus, it may be hard to enforce an
honest majority of mining power in every subnet, which can
result in the subnet chain being compromised or attacked.
The system provides a firewall security property, introduced
in [9]; this guarantees that, for token exchanges, the impact of
a child subnet being compromised is limited to, at most, its
circulating supply of the token, determined by the (positive)
balance between cross-net transactions entering the subnet and
cross-net transactions leaving the subnet. Addresses in a subnet
are funded through cross-net transactions that inject tokens
into the subnet. In order for users to be able to spawn a new
subnet, they need to deposit an initial collateral into the new
subnet’s parent. This collateral offers a minimum level of trust
to new users injecting tokens to the subnet and can be slashed
in case of misbehavior by subnet validators.

Miners in subnets are rewarded with fees for the transactions
executed in the subnet. Subnets can run a consensus algorithm
of their choosing to validate blocks and can determine the

consensus proofs they want to include for light clients (i.e.,
nodes that do not synchronize and retain a full copy of the
blockchain and thus do not verify all transactions). Subnets
periodically commit a proof of their state in their parent
through checkpoints. These proofs are propagated to the top
of the hierarchy, making them accessible to any member of
the system. They should include enough information that any
client receiving it is able to verify the correctness of the subnet
consensus. Subnets are free to choose a proof scheme that suits
their consensus best [e.g., multi-signature, threshold signature
or zero-knowledge (ZK) proofs]. With this, users are able to
determine the level of trust over a subnet according to the
security level of the consensus run by the subnet and the
proofs provided to light clients. Checkpoints are also used
to propagate to other subnets in the hierarchy the information
pertaining to cross-net messages.

ITI. LIFECYCLE OF A SUBNET
A. Spawning and joining a subnet

Creating a new subnet instantiates a new independent state
with all its subnet-specific requirements to operate indepen-
dently. This includes, in particular: a new attack-resilient
pubsub [11] topic that peers use as the transport layer to
exchange chain-specific messages, a new mempool instance, a
new instance of the Virtual Machine (VM), as well as any other
additional module required by the consensus that the subnet
is running (system actors, i.e., smart contracts in Filecoin
terminology; mining power resources; etc. [7]).

To spawn a new subnet, peers need to deploy a new
Subnet Actor (SA) that implements the core logic for the new
subnet. The contract specifies the consensus protocol to be
run by the subnet and the set of policies to be enforced for
new members, leaving members, checkpointing, killing the
subnet, etc. For a new subnet to interact with the rest of the
hierarchy, it needs to be registered in the Subnet Coordinator
Actor (SCA) of the parent chain. The SCA is a system actor
that exposes the interface for subnets to interact with the
hierarchical consensus protocol. This smart contract includes
all the available functionalities related to subnets and their
management. And, as SAs are user-defined and untrusted, it
also enforces security assumptions, fund management, and
the cryptoeconomics of hierarchical consensus. Subnets are
identified with a unique ID that is inferred deterministically
from the ID of its ancestor and from the ID of the SA that
governs its operation. This deterministic naming enables the
discovery of and interaction with subnets from any other point
in the hierarchy without the need of a discovery service: peers
need only send a message to the subnet’s specific pubsub topic,
identified with the subnet’s ID.

B. Checkpointing protocol

Checkpoints are used to anchor a subnet’s security to that
of its parent chain, as well as to propagate information from
a child chain to other subnets in the system. Checkpoints for
a subnet can be verified at any point using the state of the
subnet chain which can then be used to generate equivocation

proofs (or so-called fraud proofs) which, in turn, can be used
for penalizing misbehaving entities (“slashing”).

Subnet miners need to provide a minimum collateral,
minCollateralgsypnet, in their parent’s SCA to register the
subnet to the hierarchy and be able to interact with other
subnets. This collateral is frozen through the lifetime of the
subnet and does not become part of its circulating supply.
These collateral funds are the ones slashed in the face of
a valid fraud proof. If the subnet’s collateral drops below
minCollateral s, pnet, the subnet enters an inactive state, and
it can no longer interact with the rest of the hierarchy. To
recover its active state, users of the subnet need to put up
additional collateral.

Checkpoints need to be signed by miners of a child chain
and committed to the parent chain through their corresponding
SA. The specific signature policy is defined in the SA and de-
termines the type and minimum number of signatures required
for a checkpoint to be accepted and validated by the SA for
its propagation to the top chain. Different signature schemes
may be used here, including multi-signatures or threshold
signatures among subnet miners.

As an example, consider a checkpoint for subnet
/root/A/B. Periodically (in terms of subnet block time),
miners access the checkpoint template that needs to be signed
and populated by calling the SCA in /root/A/B. Once signed,
checkpoints from /root/A/B are committed to the SA B of
the subnet chain /root/A. After performing the corresponding
checks, this actor triggers a message function to the SCA in
/root/A, which is responsible for aggregating the checkpoint
from /root/A/B with those of other children of /root/A
and for generating a new checkpoint for /root/A that is
then propagated to its parent chain, /root. As checkpoints
flow up the chain, the SCA of each chain picks up these
checkpoints and inspects them to propagate potential state
changes (like balance updates in a monetary transaction)
triggered by messages included in the cross-net messages (for
brevity, we call these simply cross-msgs) that have the SCA’s
subnet as a destination subnet (see Fig. 2).

Checkpoints are always identified though their Content
Identifier (CID)?, a unique identifier inferred from the check-
point’s hash, and include the corresponding signature from
miners in the subnet chain (this can be the signature of
an individual miner, a multi-signature, or a threshold sig-
nature, depending on the SA policy). Checkpoints include
the following data: < s, proof, prev, children, crossMeta >
where: (i) s is the source subnet of the checkpoint; (ii)
proof is the content identifier CID (roughly corresponding
to a hash) of the latest block from the subnet chain being
committed in the checkpoint; (iii) prev is a pointer to the
CID of the previous checkpoint of the subnet; (iv) children =
(from,cid) is a tree which includes the subnet ID and the
corresponding checkpoint CID for every child chain; and (v)
crossMeta = (from,to,nonce, msgsC'id) is a tree of cross-
msg metadata including every cross-msg being propagated

Zhttps://github.com/multiformats/cid

o) | (o) |
| Epoch=200 i | Epoch=300 ' Jroot/A

,,

i /root/A/B

H
:

- Sign Sign

Checkpoint checkpoint checkpoint

; Period epoch=200 epoch=300

-

i
Cross-msgs | Cross-msgs

!

'
i

' 1

: |

i Checkpoint E Checkpoint '

! Template : Template i

' Epoch=300 ! Epoch=400 |

' ' |

Epoch Epoch Epoch
100 200 300

Cross-msgs

W

!
R Checkpoint
H Template

'

Epoch=200

Epoch
400

Signing

Signing

- > < >

Fig. 2. Checkpoint template population. The checkpoint period in the
SA determines the window during which cross-msgs are accepted in the
current checkpoint. Upon reaching the end of the period, new cross-msgs
begin populating the next checkpoint and a signature window is opened for
the previous one.

upwards by the subnet and its children. We call this cross-msg
metadata CrossMsgMeta; it includes information about: the
source subnet, from, of the group of messages; the destination
subnet, to; the cross-msg nonce, nonce; and the CID (message
digest) of the group of messages, msgsCid. This tree of
CrossMsgMeta gets updated with every new checkpoint on
its way up the hierarchy.

C. Leaving and killing a subnet

Members of a subnet can leave the subnet at any point by
sending a message to the subnet’s SA in the parent chain. If
the miner fulfils the requirements to leave the subnet defined
in the subnet’s SA when it was deployed, a message to the
SCA is triggered by the SA to release the miner’s collateral. If
a miner leaving the subnet brings the collateral of the subnet
below minCollateralsypnet, the subnet gets in an inactive
state. Miners of a subnet can also kill a subnet by sending a
message to the SA. Similar to the previous situation, the SA
sends a message to the SCA to release all the collateral for the
subnet if all the requirements to kill the subnet are fulfilled.

A subnet may be killed while it is still holding user funds or
useful state. If miners leave the subnet and take the collateral
below the threshold enforced by the hierarchical consensus to
allow cross-net communication, users no longer have a way to
get their funds and state out of the subnet. To prevent this from
happening, the SCA includes a save function that allows any
participant in the subnet to persist the state. Users may choose
to perform this snapshot with the latest state right before the
subnet is killed, or perform periodic snapshots to keep track
of the evolution of the state. Through this persisted state and
the checkpoints committed by the subnet, users are are able

to provide proof of pending funds held in the subnet or of a
specific part of the state that they want to be migrated back
to the parent.

IV. CROSS-NET TRANSACTIONS AND EXECUTION
A. Cross-net messages

Users in a subnet interact with other subnets through cross-
net transactions. The propagation of a cross-net transaction
may slightly differ depending on the location of subnets
in the hierarchy, e.g., if moving up or down the hierarchy.
In particular, we distinguish: fop-down, bottom-up, and path
messages.

Top-down messages are cross-msgs directed towards a sub-
net that is lower in the hierarchy. When a new top-down
transaction is triggered, the SCA of the source subnet (parent)
increments a nonce that is unique to the top-down transaction
directed to each of its child subnets (destination) and stores
it in the SCA state. These nonces determine the total order
of arrival of cross-msgs to the subnet; without them, different
consensus nodes could execute different orderings, leading to
nondeterminism. The commitment of a top-down transaction
in the SCA also triggers the freezing, in the parent, of the funds
included in the message, and updates the circulating supply
in the destination subnet. These funds will be frozen until a
bottom-up transaction releases them back to the parent. Child
subnet miners always sync with their parent chains (i.e., track
their latest state) to stay informed of updates to the state of the
SCA and SA in the parent, and so are immediately notified
when there are new unverified top-down messages directed to
them.

Bottom-up messages are cross-msgs directed towards a
subnet that is higher in the hierarchy but shares the same
prefix. Bottom-up messages are propagated in checkpoints. At
every checkpoint period, the SCA collects all CrossMsgMeta
from bottom-up transactions originated in the subnet and all
the CrossMsgMeta received from the subnet’s child subnets,
and includes them in the next checkpoint to be propagated up
the hierarchy. Every message leaving the subnet triggers the
burn (in the child) and release (in the parent) of the funds
included in the message, updating its circulating supply.

When the checkpoint from the child subnet is committed
in the parent chain, the SCA of the parent chain inspects
all CrossMsgMeta in the checkpoint and collects the ones
directed to it. Bottom-up messages targeting other subnets are
propagated farther up the hierarchy in the next checkpoint,
while bottom-up CrossMsgMeta targeting the current subnet
are assigned an increasing nonce for posterior validation and
application by the subnet’s consensus algorithm.

Path messages. Every message routed in the hierarchy
can be seen as a combination of top-down and bottom-
up transactions. Path messages are cross-net messages in
which the source and destination subnets are not in the same
branch. These are propagated through bottom-up messages
(i.e., CrossMsgMeta in checkpoints) up to the common parent
(root, in the worst case), and through top-down messages
from there to the destination. As checkpoints move up in

the hierarchy, funds are conveniently released and burned in
each of the subnets as cross-msgs flow. The opposite happens
for top-down messages, where flowing messages trigger the
minting of new funds in destination subnets. This updates the
circulating supply of subnets as messages flow through the
hierarchy.

According to the route that messages need to follow through
the hierarchy and the specific consensus algorithms run by
each of the subnets, the propagation of these transactions may
be slow. To accelerate the process, each SA in the path can
send a direct message to the destination, certifying that the
user is the legitimate owner of the funds. This information can
be used by the destination subnet (depending on the finality
required for the actions to be performed) to indicate a pending
payment or even as tentative information to start operating as
if these funds were already settled and available in the subnet.

B. Cross-msg pool

Nodes in subnets keep two types of message pools: an
internal pool to track unverified messages originating in and
targeting the subnet and a cross-msg pool that listens to
unverified cross-msgs directed at (or traversing) the subnet.
To verify and execute cross-msgs in a subnet, they need to be
included by the consensus algorithm in a subnet block.

Miners’ cross-msg pools collect unverified cross-net mes-
sages by syncing with state changes in the SCA of the parent
subnet. Whenever the SCA in the parent receives a new top-
down message or collects a new bottom-up CrossMsgMeta
from a child checkpoint, the cross-msg pool is notified. Top-
down messages can be proposed to and applied directly in
the subnet. For bottom-up messages, the cross-msg pool only
has the CID of the CrossMsgMeta that points to the cross-
msgs to be applied and, therefore, needs to make a request
to the content resolution protocol (Section IV-C) to retrieve
the raw messages, so that it may propose and apply them.
Blocks in subnets include both messages originated within
the subnet and cross-msgs targeting (or traversing) the subnet.
When a new block including top-down cross-msgs is verified
in the subnet consensus, the cross-msgs are committed, and
every node receiving the new block executes the cross-msgs
to trigger the corresponding state changes and fund exchanges
in the subnet (Fig. 3).

Cross-msgs have to go through several checks before they
are stored in the SCA and provided to the subnet consensus
through the cross-msg pool, but the application of these
messages may still fail. This is especially true for arbitrary
messages. If the message for a specific nonce cannot be
applied and keeps failing when trying to be applied in the re-
spective SCA, the subnet consensus could stall. This represents
a vector for Distributed Denial of Service (DDoS) attacks. To
prevent this, a cross-msg that cannot be applied in a subnet
triggers a new cross-msg with the subnet where the execution
of the message failed as source and the original source of the
message as destination. This message is used to revert every
intermediate state change that may have been triggered in the
original cross-msg route through the hierarchy.

tpdA tpdB

v
Parent 2
Child
Pool
Child

consensus

Child (Y
SCA Subnet block

Top-Down Messages

Parent
SCA Parent block
[\

checkpoint = {...

crossMsgs: [
cid_meta, Parent CrossMsg Parent
] ; Pool consensus

!

Child cid_meta ={

from=child,

to=parent,

[tbuA, tbuB, cid_chMeta]
}

SCA

Bottom-Up Messages

Fig. 3. Commitment of top-down cross-msgs (left). When a top-down message is committed by a subnet’s parent, it is assigned the next nonce and added
to the list of unverified top-down messages for the destination subnet. The cross-msg pool of nodes in the child listens to changes in the parent’s state and
pulls any new unverified cross-msg to the subnet. These messages are proposed inside the next block of the consensus and are ordered and verified as any
other messages sent within the subnet. When the block including cross-msgs is committed, they are applied and the corresponding state changes are triggered.
Commitment of bottom-up cross-msgs (right). Bottom-up messages are propagated through checkpoints. The child subnet aggregates the cross-msgs from
within its own subnet and those propagated from its children inside a meta-tree, and includes this meta-tree in the next checkpoint. When the parent receives
the checkpoint, it checks what meta-trees are directed to itself and which need to be propagated further. Meta-trees to other subnets are included in the next
checkpoint of the parent, while those targeting the current subnet are assigned the next unique nonce and stored for commitment. When the next unverified
meta-tree is picked up, the corresponding messages are fetched, ordered, and proposed in the next block, and consequently committed and applied.

C. Subnet cross-msg resolution protocol

For scalability reasons, when the destination subnet receives
a new checkpoint with messages, it is only provided with the
CID of the messages (i.e., the CrossMsgMeta) that were sent
its way. For the subnet to be able to trigger the corresponding
state changes for all the messages, it needs to fetch the payload
of messages behind that CID as illustrated in Fig. 4. The
subnet SCA where the bottom-up message is generated keeps
a registry with all CIDs for CrossMsgMetas propagated (i.e.,
a content-addressable key-value store), which is used to fulfill
content resolution requests. The content resolution protocol
implements two approaches to resolve content:

(i) A push approach, where, as the checkpoints and
CrossMsgMetas move up the hierarchy, miners publish to
the pubsub topic of the corresponding subnet the whole Dis-
tributed Acyclic Graph (DAG) belonging to the CID, including
all the messages targeting that subnet. Content is pushed to
other subnets by publishing in the destination subnet’s pubsub
topic a push message specifying the type of content being
pushed along with its CID. Peers may choose to directly push
the corresponding messages behind a CrossMsgMeta to the
destination address once a checkpoint has been signed. When
peers in the subnet come across these messages, they may
choose to pick them up and cache/store them locally or discard
them (in which case, they will need to explicitly resolve the
content when required).

(i) A pull approach, where, upon a destination subnet
receiving a checkpoint with cross-msgs directed to it, miners’
cross-msg pools publish a pull message in the source sub-
net’s pubsub topic to resolve the cross-msgs for a specific

root ‘

Checkpoint {
CrossMsgsMeta: push/pul | Push/Pul
[to-root: cid-ba], cid-ca cid-ba

}

Sub_1 CrossMsgs {
SCA To-root: {cid-ba: [msg1, msg2, cid-cal),
}

Checkpoint {
CrossMsgsMeta:

[to-root: cid-ca,

to-sub_1: cid-cb],

Push/Pull
cid-ch

Sub_11

To-root: {cid-ca: [msgl, msg2]},
To-sub_1: {cid-ch: [msg3, msg4]}

CrossMsgs { ‘

}

Fig. 4. Content resolution protocol for cross-msgs. Whenever a subnet
submits a new checkpoint to its parent, it pushes the messages behind the
CIDs included in the meta-trees of the checkpoint. If a subnet comes across
a CID in the meta-tree that it cannot resolve locally (either because it missed
the push message from the subnet, or because it recently joined the network),
it can resolve the messages behind the CID by sending a pull request to the
originating subnet.

CID found in the tree of cross-msg meta. These requests
are answered by publishing a new resolve message in the
requesting subnet with the corresponding content resolution.
This new broadcast of a content resolution to the subnet’s
pubsub channels gives every cross-msg pool a new opportunity
to store or cache the content behind a CID even if they do not
yet need it.

D. Generality of the approach beyond payments: Atomic exe-
cutions

An issue arises when state changes need to be atomic and
impact the state of different subnets [12]. A simple example
of this is the atomic swap of two assets hosted in different
subnets. The state change in the subnets needs to be atomic,
and it requires from state that lives in both subnets. To handle
these atomic transactions, users in the subnets can choose any
subnet in the hierarchy in which they both have a certain level
of trust to migrate the corresponding state and orchestrate the
execution. Generally, subnets will choose the closest common
parent as the execution subnet, as they are already propagating
their checkpoints to it and therefore leveraging shared trust.

A cross-net atomic execution takes tuples of input states and
returns tuples of outputs states, which may belong to different
subnets, but should appear as a single transaction in which
all input/output states belong to the same subnet. Our atomic
execution protocol has the following properties:

(i) Timeliness: The protocol eventually completes by com-
mitting or aborting.

(ii) Atomicity: If all involved subnets commit and no sub-
net aborts beforehand, the protocol commits and all subnets
involved have the output state available as part of their subnet
state. Otherwise, the protocol aborts and all subnets revert to
their initial state.

(iii) Unforgeability: No entity in the system (user or con-
tract) is able to forge the inputs and outputs provided for the
execution or the set of messages orchestrating the protocol.

Finally, the data structures used by the protocol need to
ensure the consistency of the state in each subnet, i.e., that the
output state of the atomic execution can be applied onto the
original state (and history) of the subnet without conflicts.

Our atomic execution protocol consists of the following
phases, which, combined, resemble a two-phase commit proto-
col with the SCA of the least common ancestor/parent serving
as a coordinator:

Initialization: To signal the start of an atomic execution,
the users interact off-chain to agree on the specific execution
they want to perform and the input state it will involve. To
start the execution, each user needs to lock, in their subnet,
the state that will be used as input for the execution. This
prevents new messages from affecting the state and leading to
inconsistencies when the output state is migrated back. The
locking of the input state in each subnet signals the beginning
of the atomic execution.

Off-chain execution: Each user only holds part of the
state required for the execution. In order for users to be able
to execute locally, they need to request the state locked in the
other subnet. The CID of the input state is shared between the
different users during the initialization stage, and is leveraged
by each user to request from the other subnets the locked
input states involved in the execution. Once every input state
is received, each user runs the execution to compute the output
state.

Commit atomic execution in parent subnet: As users
compute the output state, they commit it in the SCA of the

root
[SCA ‘
/ AN

5. Get final state
or ABORT

5. Get final state
or ABORT

Sub_1 / [J
SCA ERC721

1. Lock state|

Sub_2 N
W ERC721

,/ ~._ 2 Getlocked
2. Get locked e S~ state sub_1
state sub_2 /,’ Y

1. Lock state

4. Commit

execution with

“~._ parentsending
~~output CID

o 0. Off-chain agreement
___ »|
6. Unlock state 6. Unlock state 3. Execute

using locked
states locally
(output CID)

4. Commit
execution with
parent sending
output CID

3. Execute

using locked
states locally
(output CID)

Fig. 5. Atomic execution protocol. The protocol starts with an off-chain
agreement between the different users involved. All parties lock the state they
want to use as input in the atomic execution and one notifies the SCA in the
parent that they want to start an atomic execution. Once all input states have
been locked, all users collect the pending inputs from other subnets to perform
the atomic execution. Each user performs the execution off chain. Every user
submits the output state of the execution in the SCA of the parent chain.
The SCA waits for all the parties involved to submit the output state, and
checks if they all match. If the state matches, the SCA marks the execution
as successful and users are allowed to migrate the output state to their subnet.
At any point, users are allowed to abort the execution by sending a message
to the SCA of the parent.

parent subnet. This message includes the CID of the output
state, as well as the list of parties involved in the atomic
execution. The SCA waits for the commitment of the output
state computed by every user involved in the execution to
mark the execution as successful. To prevent the protocol from
blocking if one of the parties disappears halfway, any user is
allowed to abort the execution at any time and to unlock their
state by sending an ABORT message to the SCA.
Termination: All subnets involved in the protocol listen
to events in the SCA of the execution subnet. When the
SCA receives the commitment of all the computed output
states, and if they all match, the execution is marked as
successful, possible aborts are no longer taken into account,
and subnets are notified, through a cross-net message, that it
is safe to incorporate the output state and unlock the input
state. If, instead, the SCA receives an ABORT message from
some subnet before getting commitment from all subnets, it
will mark the transaction as aborted and each subnet will be
notified (through a cross-msg) that it may revert/unlock their
input state without performing changes to the local state.
One open question when moving from fungible assets
to general state is whether the firewall property can still
hold. This generalized case is problematic since compromised
subnets can send seemingly valid but actually corrupt input
states to the other subnets involved in the atomic execution.
Because subnets are only light clients of other subnets and
rely on the security of their consensus, this can be hard to
detect without an honest peer in the subnet raising the alert.
As part of future work, we are exploring schemes that would

allow the detection of invalid states in the protocol.

V. RELATED WORK

There are several concurrent approaches to the challenging
problem of scaling blockchains [1]. We group them coarsely
into four categories: sharding, payment/state channels, rollups
and sidechains/subnets.

Sharding approaches (e.g., [2], [4]-[6], [12]-[15]) partition
blockchain state processing across different groups of nodes,
unlike our hierarchical consensus. Security and performance
of sharding systems typically requires complex and periodic
reassignment of nodes [2] and state across shards [3]. Sharding
approaches have been in the focus of most academic work on
horizontal scaling to date, they have been deployed in some
blockchain systems (e.g., Zilliga [16] and Near Protocol [17]),
and are considered as candidates in others (e.g., Ethereum
[18D.

Payment channels [19] are a scaling approach in which a
payment is carried out privately among small groups of parties,
off chain, with the on-chain communication being reserved
only for setup and dispute resolution. Payment channels have
been deployed in practice, with the most prominent example
being the Bitcoin Lightning Network [20]. This approach was
later generalized to general-state channels (e.g., [21]).

Rollups propose a tiered blockchain architecture where, in
short, a top tier (L1) blockchain only orders transactions which
are then retrieved from other tiers (given a data availability
tier) for execution. Separate execution nodes (L2) post back
results to L1 so that not everyone needs to execute. This
approach is somewhat similar to the tiered approach pioneered
by the Hyperledger Fabric permissioned blockchain [22].
Current early rollup implementations include: (i) optimistic
rollups (e.g., [23]) in which only a subset of execution nodes
execute publicly available transactions in the common case
and where transactions are reexecuted on L1 in case of
misbehavior of L2 nodes (similar to payment channels) and
(i) ZK rollups (e.g., [24], [25]) which have execution nodes
cryptographically prove their execution correct while allowing
for fast verification (e.g., [26]).

Our hierarchical consensus is inspired by the PoS sidechain
design—to our knowledge first proposed in [9]. In general,
sidechains allow a faster and less secure chain to benefit from
the security of a more robust, slower chain by writing critical
information (e.g., a checkpoint) to it. In our case, subnets
are sidechains, hierarchically orchestrated, instantiating the
sidechain approach of [9] in a specific and novel way, which
allows for general-state cross-net atomic transactions. Further-
more, unlike [9], hierarchical consensus subnets can run any
type of consensus and are not limited to PoS-based consensus
algorithms, including on the rootnet.

A related approach to ours is that of Avalanche subnets
[27], inspired by [28], which, unlike hierarchical consensus,
support limited subnet hierarchies and do not consider cross-
net semantics. Concretely, the 3 subnets of the Avalanche
primary network (rootnet), are split into: an asset exchange
chain (X-chain), a platform chain (P-chain), which allows

for creation of further non-nested subnets, and a contract
chain (C-chain), which supports smart-contracts. In contrast,
hierarchical consensus has no such separation, and any subnet
can be used for asset exchange, smart contracts, or creating
further subnets, while supporting atomic cross-net semantics.

VI. CONCLUSIONS

This paper presented a hierarchical consensus framework
that enables the horizontal scaling of blockchain systems. It
does so by allowing the creation of subnets at any point in
the hierarchy, each being able to run a different consensus
protocol and set different policies.

Subnets can process internal transactions without going
through the main chain, only submitting periodic checkpoints
to their parent. They can also take part in cross-net trans-
actions, with support for atomic execution. In addition to
increasing chain capacity, our framework enables new use
cases by providing highly-customized environments, largely
free from the the constraints of the root chain.

While still a work in progress, we plan for this framework
to be adopted by the Filecoin blockchain. A prototype imple-
mentation of the framework is already available, with ongoing
work to integrate different consensus protocols, including
Tendermint [29] and MirBFT [30].

REFERENCES

[11 M. Vukolié, “The quest for scalable blockchain fabric: Proof-of-work
vs. BFT replication,” in Int. Workshop on Open Problems in Network
Security (iNetSec), 2015, pp. 112-125.

[2] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symp. Secur. Privacy (SP) 2018, Proc., 21-23
May 2018, San Francisco, CA, USA. 1EEE Computer Society, 2018,
pp. 583-598. [Online]. Available: https://doi.org/10.1109/SP.2018.000-5

[3] M. Krdl, O. Ascigil, S. Rene, A. Sonnino, M. Al-Bassam, and E. Riviére,
“Shard scheduler: object placement and migration in sharded account-
based blockchains,” 2021.

[4] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in CCS '16: Proc.
2016 ACM SIGSAC Conf. Comp. Commun. Secur, ser. CCS ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
17-30. [Online]. Available: https://doi.org/10.1145/2976749.2978389

[5] G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu, “Survey:
Sharding in blockchains,” IEEE Access, vol. 8, pp. 14 155-14 181, 2020.

[6] G. Avarikioti, E. Kokoris-Kogias, and R. Wattenhofer, “Divide and scale:
Formalization of distributed ledger sharding protocols,” arXiv preprint
arXiv:1910.10434, 2019.

[7]1 Protocol Labs, “Filecoin: A decentralized storage network,” https:/
filecoin.io/filecoin.pdf, 2017.

[8] “Filecoin,” https://filecoin.io/, 2021.

[9] P. Gazi, A. Kiayias, and D. Zindros, “Proof-of-stake sidechains,” in 2019

IEEE Symp. Secur. Privacy, (SP) 2019, San Francisco, CA, USA, May

19-23, 2019. 1IEEE, 2019, pp. 139-156.

S. Steinhoff, C. Stathakopoulou, M. Pavlovic, and M. Vukoli¢, “BMS:

Secure decentralized reconfiguration for blockchain and BFT systems,”

2021.

D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras,

“Gossipsub: Attack-resilient message propagation in the Filecoin and

ETH2.0 networks,” arXiv preprint arXiv:2007.02754, 2020.

E. Androulaki, C. Cachin, A. D. Caro, and E. Kokoris-Kogias,

“Channels: Horizontal scaling and confidentiality on permissioned

blockchains,” in Eur. Symp. Res. Comp. Sec. Springer, 2018, pp. 111—

131.

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]
[18]

[19]

[20]

[21]

J. Wang and H. Wang, “Monoxide: Scale out blockchains with
asynchronous consensus zones,” in 16th USENIX Symp. Networked
Syst. Des. Implementation (NSDI 19). Boston, MA: USENIX
Association, Feb. 2019, pp. 95-112. [Online]. Available: https:
/Iwww.usenix.org/conference/nsdil9/presentation/wang- jiaping

M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proc. 2018 ACM SIGSAC Conf. Comp.
Commun. Secur., ser. CCS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 931-948. [Online]. Available:
https://doi.org/10.1145/3243734.3243853

M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and
G. Danezis, “Chainspace: A sharded smart contracts platform,”
in 25th Annu. Netw. Distrib. Syst. Secur. Symp., NDSS 2018,
San Diego, CA, USA, February 18-21, 2018. The Internet Society,
2018. [Online]. Available: http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2018/02/ndss2018_09-2\ _Al-Bassam_paper.pdf

The ZILLIQA Team, “The ZILLIQA Technical Whitepaper,” https://
docs.zilliga.com/whitepaper.pdf, 2017.

A. Skidanov and I. Polosukhin, “Nightshade: Near protocol sharding
design,” https://near.org/downloads/Nightshade.pdf, 2019.

Ethereum Wiki, “On sharding blockchains FAQs,” https://eth.wiki/
sharding/Sharding-FAQs, 2021.

L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and
A. Gervais, “SoK: Layer-two blockchain protocols,” in Financial
Cryptogr. Data Secur. - 24th Int. Conf., FC 2020, Kota Kinabalu,
Malaysia, February 10-14, 2020 Revised Selected Papers, ser. Lecture
Notes in Computer Science, J. Bonneau and N. Heninger, Eds.,
vol. 12059. Springer, 2020, pp. 201-226. [Online]. Available:
https://doi.org/10.1007/978-3-030-51280-4_12

Joseph Poon and Thaddeus Dryja, “The Bitcoin Lightning Network,”
http://lightning.network/lightning-network-paper-DRAFT-0.5.pdf, 2016.
S. Dziembowski, S. Faust, and K. Hostdkova, “General state channel
networks,” ser. CCS ’18. New York, NY, USA: Association

[22]

(23]

[24]
[25]
[26]

(27
[28]

[29]

[30]

for Computing Machinery, 2018, p. 949-966. [Online]. Available:
https://doi.org/10.1145/3243734.3243856

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. D. Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukoli¢, S. W. Cocco, and
J. Yellick, “Hyperledger fabric: A distributed operating system for
permissioned blockchains,” in Proc. 13th EuroSys Conf., EuroSys
2018, Porto, Portugal, April 23-26, 2018, R. Oliveira, P. Felber, and
Y. C. Hu, Eds. ACM, 2018, pp. 30:1-30:15. [Online]. Available:
https://doi.org/10.1145/3190508.3190538

H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W.
Felten, “Arbitrum: Scalable, private smart contracts,” in 27th USENIX
Secur. Symp. (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, pp. 1353-1370. [Online]. Available: https:
/Iwww.usenix.org/conference/usenixsecurity 1 8/presentation/kalodner
“Polygon Hermez,” https://hermez.io/, 2021.

“StarkWare,” https://starkware.co/, 2021.

E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
transparent, and post-quantum secure computational integrity,” JACR
Cryptol. ePrint Arch., p. 46, 2018. [Online]. Available: http:
/leprint.iacr.org/2018/046

Avalanche, “Subnet FAQ,” https://docs.avax.network/build/tutorials/
platform/subnets/subnet-faq/, 2021.

A. E. Gencer, R. van Renesse, and E. G. Sirer, “Service-oriented
sharding with Aspen,” 2016.

E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on BFT
consensus,” CoRR, vol. abs/1807.04938, 2018. [Online]. Available:
http://arxiv.org/abs/1807.04938

C. Stathakopoulou, T. David, M. Pavlovic, and M. Vukoli¢, “Mir-BFT:
High-throughput robust BFT for decentralized networks,” Journal of
Systems Research, 2022, to appear.

