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Abstract
This paper presents Mir-BFT, a robust Byzantine fault-

tolerant (BFT) total order broadcast protocol aimed at maxi-
mizing throughput on wide-area networks (WANs), targeting
deployments in decentralized networks, such as permissioned
and Proof-of-Stake permissionless blockchain systems.

Mir-BFT is the first BFT protocol that allows multiple lead-
ers to propose request batches independently (i.e., parallel
leaders), while effectively precluding performance degrada-
tion due to request duplication by rotating the assignment
of a partitioned request hash space to leaders. As this mech-
anism removes the single-leader bandwidth bottleneck and
exposes a computation bottleneck related to authenticating
clients even on a WAN, our protocol further boosts through-
put using a client signature verification sharding optimization.
Our evaluation shows that Mir-BFT outperforms state-of-the-
art single-leader protocols and orders more than 60000 signed
Bitcoin-sized (500-byte) transactions per second on a widely
distributed setup (100 nodes, 1 Gbps WAN) with typical la-
tencies of few seconds. Moreover, our evaluation exposes
the impact of duplicate requests on parallel leader protocols
which Mir-BFT eliminates. We also evaluate Mir-BFT un-
der different crash and Byzantine faults, demonstrating its
performance robustness.

Mir-BFT relies on classical BFT protocol constructs, which
simplifies reasoning about its correctness. Specifically, Mir-
BFT is a generalization of the celebrated and scrutinized
PBFT protocol. In a nutshell, Mir-BFT follows PBFT “safety-
wise”, with changes needed to accommodate novel features
restricted to PBFT liveness.

1 Introduction

Background. Byzantine fault-tolerant (BFT) protocols,
which tolerate malicious (Byzantine [47]) behavior of a sub-
set of nodes, have evolved from being a niche technology
for tolerating bugs and intrusions to be the key technology
to ensure consistency of widely deployed decentralized net-
works in which multiple mutually untrusted parties administer
different nodes (such as in blockchain systems) [27, 35, 58].
Specifically, BFT protocols are considered to be an alternative
to (or complementing) energy-intensive and slow Proof-of-
Work (PoW) consensus protocols used in early blockchains

*Work done while at IBM Research Europe - Zurich

including Bitcoin [34, 58]. BFT protocols relevant to decen-
tralized networks are consensus and total order (TO) broad-
cast protocols [21] which establish the basis for state-machine
replication (SMR) [54] and smart-contract execution [60].

BFT protocols are known to be very efficient on small
scales (few nodes) in clusters (e.g., [12,44]), or to exhibit mod-
est performance on large scales (thousands or more nodes)
across wide area networks (WAN) (e.g., [35]). Recently, con-
siderable research effort (e.g., [19, 26, 36, 51, 61]) focused on
maximizing BFT performance in medium-sized WAN net-
works (on the order of 100 nodes), as this deployment setting
is highly relevant to different types of decentralized networks.

On the one hand, permissioned blockchains, such as Hy-
perledger Fabric [11], are rarely deployed on scales above
100 nodes. Yet use cases gathering dozens of organizations,
which do not necessarily trust each other, are very promi-
nent [2]. On the other hand, this setting is also highly rele-
vant in the context of large scale permissionless blockchains,
in which anyone can participate, that use weighted voting
(based, e.g., on Proof-of-Stake (PoS) [20, 40] or delegated
PoS (DPoS) [5]) or committee-voting [35] to limit the num-
ber of nodes involved in the critical path of the consensus
protocol. With such weighted voting the number of (rele-
vant) nodes for PoS/DPoS consensus is typically on the order
of a hundred [5] or sometimes even less [8]. Related open-
membership blockchain systems, such as Stellar, also run
consensus among less than 100 nodes [48].

Challenges. Most of this research (e.g., [19,26,36,61]) aims
at addressing the scalability issues that arise in classical leader-
based BFT protocols, such as the seminal PBFT protocol [24].
In short, in a leader-based protocol, a leader, who is tasked
with assembling a batch of requests (or block of transactions)
and communicating it to all other nodes, has at least O(n)
work, where n is the total number of nodes. Hence the leader
quickly becomes a bottleneck as n grows.

A promising approach to addressing scalability issues in
BFT is to allow multiple nodes to act as parallel leaders
and to propose batches independently and concurrently either
in a coordinated, deterministic fashion [26, 38, 52] or using
randomized protocols [28, 45, 51]. With parallel leaders, the
CPU and bandwidth load related to proposing batches are dis-
tributed more evenly. However, the issue with this approach is
that parallel leaders are prone to wasting resources by propos-
ing the same duplicate requests. As depicted in Table 1, none
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of the current BFT protocols that allow for parallel leaders
deal with request duplication, which is straightforward to
satisfy in single leader protocols. The tension between pre-
venting request duplication and using parallel leaders stems
from two important attacks that an adversary can mount and
an efficient BFT protocol needs to prevent: (i) the request
censoring attack by Byzantine leader(s), in which a malicious
leader simply drops or delays a client’s request (transaction),
and (ii) the request duplication attack, in which Byzantine
clients submit the exact same request multiple times.

Parallel Leaders Prevents
Req. Duplication

PBFT [24] no yes
BFT-SMaRt [17] no yes
Aardvark [25] no yes
RBFT [13] no yes
Spinning [57] no yes
Prime [10] no yes
700 [12] no yes
Zyzzyva [44] no yes
SBFT [36] no yes
HotStuff [61] no no1

Tendermint [19] no yes
BFT-Mencius [52] yes no
RedBelly [26] yes no
RCC [38] yes no2

OMADA [30] yes no
Hashgraph [45] yes no
Honeybadger [51] yes no
BEAT [28] yes no
Mir (this paper) yes yes

Table 1: Comparison of Mir to related BFT protocols.
1 duplication could easily be prevented.
2 duplication can be prevented under stronger synchrony as-
sumptions.

To counteract request censoring attacks, a BFT protocol
needs to allow at least f + 1 different leaders to propose a
request (where f , which is typically O(n), is the threshold on
the number of Byzantine nodes in the system). Single-leader
protocols (e.g., [24,61]), which typically rotate the leadership
role across all nodes, address duplication attacks relatively
easily. On changing the leader, a new leader only needs to
make sure they do not repeat requests previously proposed by
previous leaders.

With parallel leaders, the picture changes substantially. If
a (malicious or correct) client submits the same request to
multiple parallel leaders concurrently, the parallel leaders
will include the same request in their respective batches, i.e.,
they will order duplicates of the same request. While these
duplicates can simply be filtered out after ordering (or after
the reception of a duplicate, during ordering), the damage
has already been done — excessive resources, bandwidth
and possibly CPU have been consumed. To complicate the

picture, naïve solutions in which: (i) clients are requested
to sequentially send to one leader at the time, (ii) the leader
randomly samples a queue of pending requests, or (iii) clients
pay transaction fees for each duplicate, do not help.

In the first case, Byzantine clients mounting a request du-
plication attack are not required to respect sending a request
sequentially. Moreover, such a behavior cannot be distin-
guished from a correct client who simply sends a transaction
multiple times due to asynchrony or network issues.

Random sampling of the pending requests (Honeybad-
ger [51], BEAT [28]) proves ineffective in practice. When a
node constructs a new proposal from randomly chosen pend-
ing (i.e., received and yet unproposed) requests, its proposal
might still intersect with that of another node. This is espe-
cially likely if the system is not in deep saturation and nodes’
buffers of pending requests are small.

The third case concerns some blockchain systems, such as
Hedera Hashgraph, which charge transaction fees for every
duplicate request [15]. This approach, however, penalizes
correct clients when they resubmit a transaction to counteract
possible censoring attacks, or a slow network. In more estab-
lished decentralized systems, such as Bitcoin and Ethereum,
it is standard to charge for the same transaction only once,
even if it is submitted by a client more than once.

In summary, with up to O(n) parallel leaders, request dupli-
cation attacks may induce an O(n)-fold duplication of every
single request and bring the effective throughput to its knees,
practically voiding the benefits of using multiple leaders.

Contributions. This paper presents Mir-BFT, (or, simply,
Mir) 1), a novel BFT total order broadcast (TOB) protocol
which is the first to combine parallel leaders with robustness to
request duplication. Mir also addresses notable performance
attacks [25], such as the Byzantine leader straggler attack.
Mir is further robust to arbitrarily long, yet finite, periods
of asynchrony and is optimally resilient (requiring optimal
n ≥ 3 f + 1 nodes to tolerate f Byzantine faulty ones). On
the performance side, Mir achieves the best throughput, when
compared to legacy and state-of-the-art TOB protocols, on
public WAN networks, as confirmed by our measurements on
up to 100 nodes. The following summarizes the main features
of Mir, as well as contributions of this paper:
• Mir allows multiple parallel leaders to propose batches of
requests concurrently, in a sense multiplexing several PBFT
instances into a single total order, in a robust way. As its main
novelty, Mir partitions the request hash space and distributes
its subsets to the leaders, preventing request duplication. To
also prevent censoring attacks Mir periodically re-distributes
this partitioned assignment to the leaders.
• Mir further uses a client signature verification sharding
throughput optimization to offload CPU, which is exposed as

1In a number of Slavic languages, the word mir refers to universally
good, global concepts, such as peace and/or world.
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a bottleneck in Mir once we remove the single-leader band-
width bottleneck.
• Mir avoids “design-from-scratch”, which is known to be
error-prone for BFT [9,12]. Mir is a generalization of the well-
scrutinized PBFT protocol 2, which it closely follows “safety-
wise” while introducing important generalizations only af-
fecting PBFT liveness (e.g., (multiple) leader election). This
simplifies the reasoning about Mir’s correctness.
• We implement Mir in Go and run it with up to 100 nodes
in a multi-datacenter WAN, as well as in clusters, and under
different faults, comparing it to state of the art BFT protocols.
Our results show that Mir convincingly outperforms state of
the art, ordering more than 60000 signed Bitcoin-sized (500-
byte) requests per second (req/s), with typical latencies of
few seconds. In this setup, Mir achieves 3x the throughput of
the optimistic sub-protocol of Aliph [12], Chain, and more
than an order of magnitude higher throughput than other state
of the art single-leader BFT protocols. To put this into per-
spective, Mir’s 60000+ req/s on 100 nodes on WAN is 2.5x
the alleged peak capacity of VISA (24k req/s [6]) and more
than 30x faster than the actual average VISA transaction rate
(about 2k req/s [58]).

Roadmap. The rest of the paper is organized as follows. In
Section 2, we define the system model and in Section 3 we
briefly present PBFT (for completeness). In Section 4, we
give an overview of Mir and changes it introduces to PBFT.
We then explain Mir implementation details in Section 5. We
further list the Mir’s pseudocode in Section 6.

This is followed by Mir’s correctness proof in Section 7.
Section 8 introduces an optimization tailored to large requests,
such as the ones featured by Hyperledger Fabric. Section 9
gives evaluation details. Finally, Section 10 discusses related
work and Section 11 concludes.

2 System Model

We assume an eventually synchronous system [29] in which
the communication among correct processes can be fully
asynchronous before some global synchronization time
(GST ), unknown to nodes, after which it is assumed to be
synchronous. Processes are split into a set of n nodes, de-
noted by Nodes, and a set of clients. We assume a public
key infrastructure in which processes are identified by their
public keys; we further assume that node identities are lexi-
cographically ordered and mapped by a bijection to the set
[0 . . .n−1] which we use to reason about node identities. In
every execution, at most f nodes can be Byzantine faulty (i.e.,
crash or deviate from the protocol in an arbitrary way), such
that n≥ 3 f +1. Any number of clients can be Byzantine.

We assume an adversary that can control Byzantine faulty
nodes but cannot break the cryptographic primitives we use,

2Mir variants based on other BFT protocols can be derived as well.

such as PKI and cryptographic hashes (we use SHA-256).
H(data) denotes a cryptographic hash of data, while dataσp

denotes data signed by process p (client or node). Processes
communicate through authenticated point-to-point channels
(our implementation uses gRPC [4] over TLS, preventing
man-in-the-middle and related attacks).

Nodes implement a BFT total order (atomic) broadcast
service to clients. To broadcast request r, a client invokes
BCAST(r). A client request is a tuple r = (o, t,c), where
o is the request payload, e.g., some operation to be exe-
cuted by some application, c is a unique client identifier,
e.g., the client’s public key, and t is the client timestamp.
t is a logical timestamp, effectively counting the requests
submitted by client c. The request is wrapped in a message
〈REQUEST,r〉σc .

Two client requests r = (o, t,c),r′ = (o′, t ′,c′) are consid-
ered the same, we write r = r′ and we refer to them as dupli-
cates, if and only if o = o′∧ t = t ′∧ c = c′.

Nodes eventually output DELIVER(sn,r), such that the fol-
lowing properties hold:

P1 Validity: If a correct node delivers r, then some client
broadcast r.

P2 Agreement (Total Order): If two correct nodes deliver
requests r and r′ with sequence number sn, then r = r′.

P3 No duplication: If a correct node delivers request r with
sequence numbers sn and sn′, then sn = sn′.

P4 Totality: If a correct node delivers request r, then every
correct node eventually delivers r.

P5 Liveness: If a correct client broadcasts request r, then
some correct node p eventually delivers r.

P6 In-order delivery: If a correct i node delivers some
request r with sequence number sn, then i has delivered
requests for each sequence number sn′, such that sn′ <
sn.

Note that P3 (No duplication) is a standard TOB property
[21] that most protocols can easily satisfy by filtering out
duplicates after agreeing on request order, which is bandwidth
wasting. Mir enforces P3 without ordering duplicates, using
a novel approach to eliminate duplicates during agreement to
improve performance and scalability. Notice that a client can
still broadcast multiple requests with the same payload, which
might be meaningful with respect to the semantics of some
applications. Those requests should, however, have different
client timestamps. Client timestamps, therefore, allow such
“intended” duplication and distinguish it from “accidental” or
Byzantine request duplication.

Property P6 (In-order delivery) is typically not required to
guarantee TOB. However, it allows an external application to
execute the requests with the same order in which they are de-
livered. Importantly, Mir does not execute requests. Request

3
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Figure 1: PBFT communication pattern and messages. Bottleneck messages are shown in bold.

execution is orthogonal and can be performed in any execu-
tion model, such as the order-execute model implemented in
systems like Ethereum or the execute-order-validate model
implemented in systems like Fabric.

Notice, moreover, that, because of properties P3 and P6,
request sequence numbers do not provide any additional infor-
mation. Each request is only delivered once and in the same
order by each node in Nodes. Therefore, DELIVER(sn,r) is
equivalent to DELIVER(r) (the sequence number sn being
implied by the number of requests delivered before r). We
keep, however, the explicit sequence number in the interface
of our system to ease the reader and facilitate compatibility
with external applications which index requests with some
sequence number.

3 PBFT and its Bottlenecks

We depict the PBFT communication pattern in Figure 1.
PBFT proceeds in rounds called views which are led by the
primary. The primary sequences and proposes a client’s re-
quest (or a batch thereof) in a PRE-PREPARE message —
on WANs this step is typically a network bottleneck. Upon
reception of the PRE-PREPARE, other nodes validate the
request, which involves, at least, verifying its authenticity
(we say nodes preprepare the request). This is followed
by two rounds of all-to-all communication (PREPARE and
COMMIT messages), which are not bottlenecks as they lever-
age n links in parallel and contain metadata (request/batch
hash) only. A node prepares a request and sends a COM-
MIT message if it gets a PREPARE message from a quorum
(n− f ≥ 2 f +1 nodes) that matches a PRE-PREPARE. Fi-
nally, nodes commit the request in total order, if they get a
quorum of matching COMMIT messages.

The primary is changed only if it is faulty or if asynchrony
breaks the availability of a quorum. In this case, nodes time-
out and initiate a view change. View change involves commu-
nication among nodes in which they exchange information
about the latest preprepared and prepared requests, such that
the new primary, which is selected in a round-robin fash-

ion, must re-propose potentially committed requests under
the same sequence numbers within a NEW-VIEW message
(see [24] for details). The view-change pattern can be simpli-
fied using signatures [23].

After the primary is changed, the system enters the new
view and common-case operation resumes. PBFT comple-
ments this main common-case/view-change protocols with
checkpointing (log and state compaction) and state transfer
sub-protocols [24].

4 Mir Overview

Mir is based on PBFT [24] (Sec. 3). In a nutshell, Mir ex-
ecutes multiple instances of PBFT in parallel, in which all
nodes participate. Nodes commit a batch with a sequence
number upon receiving a quorum of matching COMMIT
messages, same as in PBFT. Finally, nodes deliver the re-
quests of a batch, or, for short, deliver the batch, once they
have committed it with some sequence number and they have
delivered all batches with smaller sequence numbers. Major
differences between PBFT and Mir are summarized in Ta-
ble 2. In this section we elaborate on these differences, giving
a high-level overview of Mir.

Request Authentication. While PBFT authenticates
clients’ requests with a vector of MACs, Mir uses signatures
for request authentication to avoid concerns associated with
“faulty client” attacks related to the MAC authenticators,
which PBFT uses, [25] and to prevent any number of
colluding nodes, beyond f , from impersonating a client.
However, this change may induce a throughput bottleneck, as
per-request verification of clients’ signatures requires more
CPU than that of MACs. We address this issue by a signature
verification sharding optimization described in Sec. 5.6.

Batching and Watermarks. Mir processes requests in
batches (ordered lists of requests formed by a leader), a stan-
dard throughput improvement of PBFT (see e.g., [12, 44]).
Mir also retains the request/batch watermarks used by PBFT

4
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Protocol PBFT [24] Mir
Client request authentication vector of MACs (1 for each node) signatures
Batching no (or, 1 request per “batch”) yes
Multiple-batches in parallel yes (watermarks) yes (watermarks)
In-order delivery no yes
Round structure/naming views epochs
Round-change responsibility view primary (round-robin across all nodes) epoch primary (round-robin across all nodes)
No. of per-round leaders 1 (view primary) many (from 1 to n epoch leaders)
No. of batches per round unbounded bounded (ephemeral epochs); unbounded (stable epochs)
Round leader selection primary is the only leader primary decides on epoch leaders (subject to constraints)
Request duplication prevention enforced by the primary hash space partitioning across epoch leaders

Table 2: High level overview of the original PBFT [24] vs. Mir protocol structure.

to boost throughput. In PBFT, request watermarks, low and
high, represent the range of request sequence numbers which
the primary/leader can propose concurrently. While many
successor BFT protocols eliminated watermarks in favor of
batching (e.g, [12,17,44]), Mir reuses watermarks to facilitate
concurrent proposals of batches by multiple parallel leaders.

Protocol Round Structure. Unlike PBFT, Mir distin-
guishes between leaders and a primary node. Mir proceeds
in epochs which correspond to views in PBFT, each epoch
having a single epoch primary — a node deterministically
defined by the epoch number, by round-robin rotation across
all the participating nodes of the protocol.

Each epoch e has a set of epoch leaders (denoted by EL(e)),
which we define as nodes that can sequence and propose
batches in e. In contrast, in PBFT, only the primary is a
leader. Within an epoch, Mir deterministically partitions
sequence numbers across epoch leaders, such that all leaders
can propose their batches simultaneously without conflicts.
Epoch e transitions to epoch e+1 if (1) one of the leaders is
suspected of failing, triggering a timeout at sufficiently many
nodes (ungracious epoch change), or (2) a predefined number
of batches maxLen(e) has been delivered (gracious epoch
change). While the ungracious epoch change corresponds
exactly to PBFT’s view change, the gracious epoch change is
a much more lightweight protocol.

Selecting Epoch Leaders. For each epoch, it is the primary
who selects the leaders and reliably broadcasts its selection
to all nodes. In principle, the primary can pick an arbitrary
leaderset as long as the primary itself is included in it. We
evaluate a simple “grow on gracious, reduce on ungracious
epoch” policy for leaderset size. If i starts epoch e with an
ungracious epoch change and e′ is the last epoch for which i
knows the epoch configuration, i adds itself to the leaderset
of epoch e′ and removes one node (not itself) for each epoch
between e and e′ (leaving at least itself in the leaderset). If
the epoch change occurred from the expiration of ecTimer on
some sequence number sn, the next epoch primary chooses
to remove the node to whom sn was assigned.

Moreover, in an epoch e where all nodes are leaders
(EL(e) =Nodes), we define maxLen(e) =∞ (i.e., e only ends
if a leader is suspected). Otherwise, maxlen(e) is a constant,
pre-configured system parameter. We call the former stable
epochs and the latter ephemeral.

More elaborate strategies for choosing epoch lengths and
leadersets, which are outside the scope of this paper, can take
into account execution history, fault patterns, weighted voting,
distributed randomness, or blockchain stake. Note that with a
policy that constrains the leaderset to only the epoch primary
and makes every epoch stable, Mir reduces to PBFT.

Request Duplication and Request Censoring Attacks.
Moving from single-leader PBFT to multi-leader Mir poses
the challenge of request duplication. A simplistic approach
to multiple leaders would be to allow any leader to add any
request into a batch ( [26, 45, 52]), either in the common case,
or in the case of client request retransmission. Such a sim-
plistic approach, combined with a client sending a request to
exactly one node, allows good throughput with no duplication
only in the best case, i.e., with no Byzantine clients/leaders
and with no asynchrony.

However, this approach does not perform well outside the
best case, in particular with clients sending identical requests
to multiple nodes. A client may do so simply because it is
Byzantine and performs the request duplication attack. How-
ever, even a correct client needs to send its request to at least
f + 1 nodes (i.e., to Θ(n) nodes, when n = 3 f + 1) in the
worst case in any BFT protocol, in order to avoid Byzantine
nodes (leaders) selectively ignoring the request (request cen-
soring attack). Therefore, a simplistic approach to parallel
request processing with multiple leaders [26, 45, 52] faces at-
tacks that can reduce throughput by factor of Θ(n), nullifying
the effects of using multiple leaders.

Note the subtle but important difference between a duplica-
tion attack (submitting the same request to multiple replicas)
and a DoS attack (submitting many different requests) that a
Byzantine client can mount. A system can prevent the latter
(DoS) by imposing per-client limits on the incoming unique
request rate. Mir enforces such a limit through client request
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watermarks. A duplication attack, however, is resistant to
such mechanisms, as a Byzantine client is indistinguishable
from a correct client with a less reliable network connection.
We demonstrate the effects of these attacks in Section 9.5.

Figure 2: Request mapping in a stable epoch with n = 4 (all
nodes are leaders): Solid lines represent the active buckets.
Req. 1 is mapped to the first bucket, first active in node 1.
Req. 2 is mapped to the third bucket, first active in node 3.
Rotation redistributes bucket assignment across leaders.

Buckets and Request Partitioning. To cope with these at-
tacks, Mir partitions the request hash space into buckets of
equal size (number of buckets is a system parameter) and
assigns each bucket to exactly one leader, allowing a leader
to only propose requests from its assigned (active) buckets
(preventing request duplication). For load balancing, Mir
distributes buckets evenly (within the limits of integer arith-
metics) to all leaders in each epoch. To prevent request cen-
soring, Mir makes sure that every bucket will be assigned to a
correct leader infinitely often. We achieve this by periodically
redistributing the bucket assignment. Bucket re-distribution
happens (1) at each epoch change (see Sec. 5.2) and (2) after a
predefined number of batches have been delivered in a stable
epoch (since a stable epoch might never end), as illustrated in
Figure 2. Note that all nodes, while proposing only requests
from their active buckets, still receive and store all requests
(this can be optimized, see 5.1).

Parallelism. The Mir implementation (detailed in
Sec. 5.10) is highly parallelized, with every worker thread
responsible for one batch. In addition, Mir uses multiple
gRPC connections among each pair of nodes which proves to
be critical in boosting throughput in a WAN especially with a
small number of nodes.

Generalization of PBFT and Emulation of Other BFT
Protocols. Mir can be easily configured to implement or
approximate single leader protocols. In particular, in PBFT,

each epoch has a single leader, the primary, same for all
batches, and an epoch change occurs only when the primary
is suspected to be faulty. To reduce Mir to PBFT we sim-
ply enforce a single leader in each epoch, the primary node,
and an infinite number of sequence numbers for each epoch;
thus all epochs are stable and all epoch changes ungracious.
This results in the signle epoch leader being responsible for
all buckets, and, therefore, hides the bucket re-distribution
sub-protocol within a stable epoch. Other protocols, such
as Tendermint [19] and Spinning [57], rotate the leader per
sequence number. To approximate such protocols, we fix
the maximum number of sequence numbers and leaders in
every epoch to 1. This results in a gracious epoch change
per sequence number and therefore rotating the leaders (the
epoch primary) with every batch.

5 Mir Implementation Details

5.1 The Client
Upon BCAST(r), i.e., broadcasting a request r, a client c
creates a message 〈REQUEST,r〉σc , where r = (o, t,c) is
a payload, timestamp, public key tuple as described in Sec-
tion 2. The client timestamp t, must be in a sliding window
between the low and high client watermark tcL < t ≤ tcH .
Client watermarks in Mir allow multiple requests originating
from the same client to be “in-flight”, to enable high through-
put without excessive number of clients. These watermarks
are periodically advanced with the checkpoint mechanism
described in Section 5.5, in a way which leaves no unused
timestamps. Mir alligns checkpointing/advancing of the wa-
termarks with bucket re-distributions (when no requests are
in flight), such that all nodes always have a consistent view
of the watermarks.

In principle, the client sends the REQUEST to all nodes
(and periodically re-sends it to those nodes who have not
received it, until the request is delivered by at least f + 1
nodes). In practice, a client may start by sending its request
to fewer than n nodes ( f +1 in our implementation) and only
send it to the remaining nodes if the request has not been
delivered by f +1 nodes after a timeout.

5.2 Sequence Numbers and Buckets
Sequence Numbers. In each epoch e, a leader may only
use a subset of e’s sequence numbers for proposing batches.
Mir partitions e’s sequence numbers to leaders in EL(e) in
a round-robin way, using modulo arithmetic, starting at the
epoch primary (see Fig. 3 and Alg. 4, Line 179). We say
that a leader leads sequence number sn when the leader is
assigned sn and is thus expected to send a PRE-PREPARE
for the batch with sequence number sn. Batches are proposed
in parallel by all epoch leaders and are processed like in
PBFT. Recall (from Table 2) that batch watermarking (not
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to be confused with client request watermarking from Sec.
5.1) allows the PBFT primary to propose multiple batches in
parallel; in Mir, we simply extend this to multiple leaders.

Figure 3: PRE-PREPARE messages in an epoch where all 4
nodes are leaders balancing the proposal load. Mir partitions
batch sequence numbers among epoch leaders.

Buckets. In epoch e = 0, we assign buckets to leaders se-
quentially. Recall, with the term bucket we refer to a subset
of the request hash space. We start the assignment from the
buckets with the lowest hash values which we assign to the
primary of epoch 0. For e > 0, the primary picks a set of
consecutive buckets for itself (primary’s preferred buckets),
starting from the bucket which contains the oldest request it
received; this is key to ensuring Liveness (P5, Sec. 2). Mir
distributes the remaining buckets evenly and deterministically
among the other leaders — this distribution is determined
from an epoch configuration which the epoch primary reli-
ably broadcasts and which contains preferred buckets and
leaderset selection (see Sec. 5.4.2). Buckets assigned to a
leader are called its active buckets.

Additionally, if e is stable (when maxLen(e) = ∞ and thus
no further epoch changes are guaranteed), leaders periodi-
cally rotate the bucket assignment (each time a pre-configured
number of batches are delivered): leader i is assigned buckets
previously assigned to leader i+1 (in modulo n arithmetic).
To prevent accidental request duplication, which could result
in leader i being suspected and removed from the leaderset,
leader i waits to deliver all “in-flight” batches before start-
ing to propose its own batches (Alg. 4, Line 68 and Alg. 4,
Lines 194-198). Other nodes do the same before prepreparing
batches in i’s new buckets. In the example shown in Fig.
2, after the bucket re-distribution (rotation), node 0 waits to
deliver all batches (still proposed by node 1) from its newly
active red (second) bucket, before node 0 starts proposing
new batches from the red (second) bucket.

5.3 Common Case Operation
REQUEST. In the common case, the protocol proceeds as
follows. Upon receiving 〈REQUEST,r〉σc with r = (o, t,c)

from a client, an epoch leader first verifies that the request
timestamp t is within the client’s current watermarks tCL < t ≤
tCH and maps the request to the respective bucket by hashing
the client timestamp and identifier hr = H(t||c). Each bucket
corresponds to a FIFO queue of the received client requests,
further referred to as bucket queue. We do not hash the request
payload, as this would allow a malicious client to target a
specific bucket by adapting the request payload, mounting
load imbalance attacks. If the request falls into the leader’s
active bucket, the leader also verifies the client’s signature σc.
A node i discards r if r is already in the corresponding bucket
queue.
PRE-PREPARE. A leader creates a proposal by adding a
batch of requests from its active bucket queues to a PRE-
PREPARE message. The requests that are added in the
batch are not immediately deleted but they are marked as
pending. This guarantees that the requests maintain their
priority if, in the event of an epoch-change, they are not
committed. Once leader i gathers enough3 requests in its
current active bucket queues, or if timer Tbatch expires (since
the last batch was proposed by i), i adds the non-pending, not
preprepared requests from the current active bucket queues in
a batch, assigns its next available sequence number sn to the
batch (provided sn is within batch watermarks) and sends a
PRE-PREPARE message. If Tbatch time has elapsed and no
requests are available, i sends a PRE-PREPARE message
with an empty batch. This guarantees progress of the protocol
under low load.

A node j accepts a PRE-PREPARE (we say preprepares
the batch and the requests it contains), with sequence number
sn for epoch e from node i provided that:

1. the epoch number matches the local epoch number
(Alg. 4, Line 82, Alg. 1, Line 5) and j did not preprepare
another batch with the same e and sn (Alg. 4, Line 83)

2. node i is in epoch leaders EL(e) (Alg. 4, Line 84, Alg. 4,
Line 178)

3. node i leads sn (Alg. 4, Line 84, Alg. 4, Line 179)

4. the batch sequence number sn in the PRE-PREPARE
is between a low watermark and high batch watermark:
w < sn≤W (Alg. 4, Line 82, Alg. 1, Line 5)

5. none of the requests in the batch have already been
preprepared (Alg. 4, Line 85)

6. every request in the batch has timestamp within the cur-
rent client’s watermarks (Alg. 4, Line 86)

7. every request in the batch maps to one of i’s active buck-
ets (Alg. 4, Line 87)

3determined by the BatchSize configuration parameter
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8. every request in the batch has a signature which verifies
against client’s id, i.e., the corresponding public key
(Alg. 4, Line 88)

Conditions (1)-(4) are equivalent to checks done in PBFT,
whereas conditions (5)-(8) differ from PBFT. Condition (5)
is critical for enforcing No Duplication (Property P3, Sec. 2).
Conditions (6) (allowing clients to send more than one request
concurrently) and (7) (prohibiting malicious leaders to pro-
pose requests outside their buckets) are performance related.
Condition (8) is the key to Validity (Property P1). As this step
may become a CPU bottleneck if performed by all nodes, we
use signature sharding as an optimization (see Sec. 5.6).
Committing a batch. If node j preprepares the batch, j sends
a PREPARE and the protocol proceeds exactly as PBFT
(Alg. 4, Lines 93-109). Otherwise, j ignores the batch (which
may eventually lead to j entering epoch change). Upon com-
mitting a batch, j removes all requests present in the commit-
ted batch from j’s bucket queues. (Alg. 4, Line 115).
In-order delivery. We say that a node i delivers a commit-
ted batch with sequence number sn once i has delivered all
batches with sequence number sn′ where sn′ < sn (Alg. 4,
Lines 119-123). This effectively enforces In-order delivery
(Property P6).

Upon delivering a batch with sequence number sn, a node
outputs DELIVER(snr,r) for each request r in the batch. An
application running on a replica on top of Mir can now safely
execute r.

We define a function for assigning request sequence num-
bers to individual requests. The request sequence number is
defined upon delivering the batch which the request is part
of. It depends on the relative position of the request within
the batch and the total number of requests in all previously
delivered batches. Formally, for a batch with sequence num-
ber sn≥ 0 delivered by some correct node, let Ssn be the total
number of requests in that batch (possibly 0). Let r be the kth

request that a correct node delivers in a batch with sequence
number sn. Then snr = k for sn = 0 and snr = k+∑

sn−1
j=0 S j

for sn> 0. Notice that when some node i delivers a batch with
sequence number sn, Ssn′ is known to i for each sn′ where
sn′ < sn, since Mir delivers batches in-order.

5.4 Epoch Change
Locally, at node j, epoch e can end graciously, by exhaust-
ing all maxLen(e) sequence numbers, or ungraciously, if an
epoch change timer (corresponding to the PBFT view change
timer) at j expires. In the former (gracious) case, a node sim-
ply starts epoch e+1 (see also Sec. 5.4.2) when it: (1) locally
delivers all sequence numbers in e, and (2) reliably delivers
the epoch configuration for e+1 (Alg. 4, Line 153). In the
latter (ungracious) case, a node first enters an epoch change
sub-protocol (Sec. 5.4.1) for epoch e+1 (Alg. 4, Line 125).

It can happen that some correct nodes finish e graciously
and some others do not. Such temporary inconsistency may

prevent batches from being committed in e+ 1 even if the
primary of e+1 is correct. However, such inconsistent epoch
transitions are eventually resolved in subsequent epochs, anal-
ogously to PBFT, when some nodes complete the view change
sub-protocol and some do not (due to asynchrony). As we
show in in Section 7.5, the liveness of Mir is not violated.

5.4.1 Epoch Change Sub-protocol

The epoch change sub-protocol is triggered by epoch timeouts
due to asynchrony or failures and generalizes PBFT’s view
change sub-protocol. Upon committing a batch with sequence
number sn, each correct node starts a timer ecTimer(sn+1)
for the batch with sequence number sn+1 (Alg. 4, Line 116).
The timer is cancelled once the batch is delivered (Alg. 4,
Line 122).

If an ecTimer for any sequence number expires at node i, i
enters the epoch-change sub-protocol to move from epoch e
to epoch e+1.

In this case, i sends an EPOCH-CHANGE message to
the primary of epoch e+1. An EPOCH-CHANGE message
follows the structure of a PBFT VIEW-CHANGE message
(page 411, [24]) with the difference that it is signed and that
there are no VIEW-CHANGE-ACK messages exchanged
(to streamline and simplify the implementation similarly to
PBFT [22]). The construction of a NEW-EPOCH message
(by the primary of e+ 1) proceeds in the same way as the
PBFT construction of a NEW-VIEW message. A node starts
epoch e+1 by processing the NEW-EPOCH message the
same way a node starts a new view in PBFT by processing a
NEW-VIEW message.

However, before entering epoch e+1, each correct node
resurrects potentially preprepared but uncommitted requests
from previous epochs that are not reflected in the NEW-
EPOCH message. This is required to prevent losing requests
due to an epoch change (due to condition (5) in prepreparing
a batch — Sec. 5.3), as not all batches that were created and
potentially preprepared before the epoch change were neces-
sarily delivered when starting the new epoch. Resurrecting a
request means that each correct node marks the request as not
preprepared. The node further marks as not pending any of
those requests that where marked pending. (Alg. 4, Line 170)
This allows proposing and prepreparing such requests again
with a different sequence number. Request resurrection is
required for Liveness (P5).

5.4.2 Starting a New Epoch

Every epoch e, be it gracious or ungracious, starts by the
primary reliably broadcasting (using Bracha’s classic 3-phase
algorithm [18]) the epoch configuration information4 con-
taining: (1) EL(e), the set of epoch leaders for e, and (2)

4We optimize the reliable broadcast of an epoch configuration using
piggybacking on other protocol messages where applicable.
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identifiers of primary’s preferred buckets, which the primary
selects based on the oldest request pending at the primary
(Alg. 4, Lines 128-141 and Alg. 4, Lines 143-150).

Before starting to participate in epoch e (including process-
ing a potential NEW-EPOCH message for e) a node i first
waits to reliably deliver the epoch e configuration. In case of
gracious epoch change, node i also waits to locally commit
all “in-flight” batches pertaining to e−1.

5.5 Checkpointing (Garbage Collection)
Exactly as in PBFT, Mir uses a checkpoint mechanism to
prune the message logs. We consider a sequence num-
ber divisible by a predefined configuration parameter as
a checkpoint. After a node i commits all batches with
sequence numbers up to and including snC, i sends a
〈CHECKPOINT,snC,H(C′)〉σi message for the new check-
point snC to all nodes, where H(C′) is the hash of the batches
with sequence numbers sn in range sn′C < sn≤ snC, and sn′C
is the previous checkpoint. Each node collects checkpoint
messages until it has 2 f + 1 matching ones (including its
own), constituting a checkpoint certificate, and persists the
certificate. At this point, the checkpoint is stable and the
node can discard the common-case messages from its log for
sequence numbers lower than snC.

Mir advances batch watermarks at checkpoints like PBFT
does. Clients’ watermarks are also possibly advanced at
checkpoints, as the state related to previously delivered re-
quests is discarded. For each client c, the low watermark
tcL advances to the highest timestamp t in a request submit-
ted by c that has been delivered, such that all requests with
timestamp t ′ < t have also been delivered. The high water-
mark advances to tcH = tcL +wc, where wc is the length of the
sliding window.

5.6 Signature Verification Sharding (SVS)
To offload CPU during failure-free execution (in stable
epochs), we implement an optimization where not all nodes
verify all client signatures. For each batch, we distinguish
f +1 verifier nodes, defined as the f +1 lexicographic (mod-
ulo n) successors of the leader proposing the batch. Only the
verifiers verify client signatures in the batch on reception of a
PRE-PREPARE message (condition (8) in Sec. 5.3). Fur-
thermore, we modify the Mir (and thus PBFT) common-case
protocol such that a node does not send a COMMIT before
having received a PREPARE message from all f + 1 veri-
fiers (in addition to f other nodes and itself). This maintains
Validity, as at least one correct node must have verified the
client’s signature. This way, however, if even a single verifier
is faulty, SVS may prevent a batch from being committed.
Therefore, we only apply this optimization in stable epochs
where all nodes are leaders. In case an (ungracious) epoch
change occurs reducing the size of the leaderset, Mir disables

SVS. Even though it might seem that SVS gives more op-
portunity to Byzantine nodes to trigger epoch changes, this
is not the case. Since SVS is only enabled when all nodes
are leaders, whenever a Byzantine node can trigger an epoch
change through SVS, it can also do so by simply not propos-
ing any batches on its own. Such a performance attack could
occur in a stable epoch with or without SVS and its impact is
examined in Section 9.5.

5.7 State Transfer

Nodes can temporarily become unavailable, either due to
asynchrony, or due to transient failures. Upon recov-
ery/reconnection, nodes must obtain several pieces of infor-
mation before being able to actively participate in the protocol
again. Mir state transfer is similar to that of PBFT, and here
we outline the key aspects of our implementation.

To transfer state, nodes need to obtain current epoch con-
figuration information, the latest stable checkpoint (which
occurred at sequence number h), as well as information con-
cerning batches having sequence numbers between h+1 and
the latest sequence number. Nodes also exchange information
about committed batches.

The state must, in particular, contain two pieces of informa-
tion: (1) the current epoch configuration, which is necessary
to determine the leaders from which the node should accept
proposals, and (2) client timestamps at the latest checkpoint,
which are necessary to prevent including already proposed
client requests in future batches.

A node i in epoch e initiates state transfer when i receives
common-case messages from f +1 other nodes with epoch
numbers higher than e, and i does not transition to e+1 for a
certain time. Node i obtains this information by broadcasting
a 〈HELLO,nei,ci,bi〉 message, where nei is the latest NEW-
EPOCH message received by i, ci is the node’s last stable
checkpoint, and bi is the last batch i delivered. Upon receipt
of a HELLO message, another node j replies with its own
HELLO message, as well as with any missing state from the
last stable checkpoint and up to its current sequence number
sn.

From the latest stable checkpoint, a node can derive the
set of 2 f +1 nodes which signed this stable checkpoint. This
also allows a node to transfer missing batches even from one
out of these 2 f +1 nodes, while receiving confirmations of
hashes of these batches from f additional nodes (to prevent
ingress of batches from a Byzantine node).

We perform further optimizations in order to reduce the
amount of data that needs to be exchanged in case of a state
transfer. First, upon reconnecting, nodes announce their pres-
ence but wait for the next stable checkpoint after state trans-
fer before actively participating in the protocol again. This
enables us to avoid transferring the entire state related to re-
quests following the preceding stable checkpoint. Second, the
amount of data related to client timestamps that needs to be
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transmitted can be reduced through only exchanging the root
of the Merkle tree containing the client timestamps, with the
precise timestamps being fetched only if necessary.

5.8 Membership Reconfiguration
While details of membership reconfiguration are outside of
the scope of this paper, we briefly describe how Mir deals
with adding/removing clients and nodes. Such requests, called
configuration requests are totally ordered like other requests,
but are tagged to be interpreted/executed by nodes. Follow-
ing the same principle as in Section 5.2, paragraph Buckets,
the new configuration should take effect right after the next
bucket re-distribution, when no requests are in-flight. This
guarantees that all correct nodes are in the same configuration
when processing the fist batch after the bucket re-distribution.

5.9 Durability (Persisting State)
By default, Mir implementation does not persist state or mes-
sage logs to stable storage. Hence, a node that crashes might
recover in a compromised state — however such a node does
not participate in the protocol until the next stable checkpoint
which effectively restores the correct state. While we opted
for this approach assuming that for few dozens of nodes simul-
taneous faults of up to a third of them will be rare, for small
number of nodes the probability of such faults grows and with
some probability might exceed threshold f . Therefore, we
optionally persist state pertaining to sent messages in Mir,
which is sufficient for a node to recover to a correct state after
a crash.

We also evaluated the impact of durability with 4 nodes, in
a LAN setting, where it is mostly relevant due to small num-
ber of nodes and potentially collocated failures, using small
transactions. We find that durability has no impact on total
throughput, mainly due to the fact that persisted messages are
amortized due to batching, Mir parallel architecture and the
computation-intensive workload. However, average request
latency increases by roughly 300ms.

5.10 Implementation Architecture
We implemented Mir in Go. Our implementation is multi-
threaded and inspired by the consensus-oriented parallelism
(COP) architecture previously applied to PBFT to maximize
its throughput on multicore machines [16]. Specifically, in our
implementation, a separate thread is dedicated to managing
each batch during the common case operation, which simpli-
fies Mir code structure and helps maximize performance. We
further parallelize computation-intensive tasks whenever pos-
sible (e.g., signature verifications, hash computations). The
only communication in common case between Mir threads
pertains to request duplication prevention (rule (6) in accept-
ing PRE-PREPARE in Sec. 5.3) — the shared data structures

for duplication prevention are hash tables, synchronized with
per-bucket locks; instances that handle requests correspond-
ing to different leaders do not access the same buckets. The
only exception to the multi-threaded operation of Mir is dur-
ing an ungracious epoch-change, where a designated thread
(Mir Manager) is responsible for stopping worker common-
case threads and taking the protocol from one epoch to the
next. This manager thread is also responsible for sequential
batch delivery and for checkpointing, which, however, does
not block the common-case threads processing batches.

Our implementation also parallelizes network access using
a configurable number of independent network connections
between each pair of nodes. This proves to be critical in boost-
ing Mir performance beyond seeming bandwidth limitations
in a WAN that stem from using a single TCP/TLS connection.

In addition to multiple inter-node connections, we use an
independent connection for handling client requests. As a
result, the receipt of requests is independent of the rest of the
protocol — we can safely continue to receive client requests
even if the protocol is undergoing an epoch change. Our
implementation can hence seamlessly use, where possible,
separate NICs for client’s requests and inter-node communi-
cation to address DoS attacks [25].

6 Pseudocode

In this section we introduce Mir pseudocode. We first present
PBFT [24] pseudocode to demonstrate the common message
flow in the common case of the two protocols. Experienced
readers familiar with PBFT are encouraged to fast forward to
Mir (Algorithm 4).

Each node executes its own instance of the algorithm de-
scribed by the pseudocode. The node atomically executes
each upon block exactly once for each assignment of values
satisfying the block’s triggering condition.

For better readability we do not include batching in the
pseudocode. Implementing batching is trivial by replacing
requests with batches of requests, except request handling
(Algorithm 4, lines 55- 62). Moreover, whenever appropriate,
instead of performing a request-specific action on a batch, we
perform this action on all requests in a batch, like request
validity checks in PRE-PREPARE (Algorithm 4, lines 86-
88) and request resurrection (Algorithm 4, lines 162-176). In
the context of request-specific validity checks, we consider
the whole batch invalid if any of the contained requests fails
its validity check. Finally, PreprepareTimeout corresponds
to Tbatch and, with batching enabled, condition in Algorithm 4,
line 66 should be replaced with checking either if Tbatch has
ellapsed or if there exist enough requests for a batch.
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Algorithm 1 Common
1: function IsPrimary(id,view,num_nodes) :
2: return id = view mod num_nodes;
3:
4: function Valid(local_view,view,seq_no, low,high) :
5: if (local_view = view) and (low <= seq_no < high) then
6: return True;
7: else
8: return False;
9: end if

10:
11: function GetOldest(S1,S2) :
12: Returns the oldest entry in set S1 \S2.
13:

Algorithm 2 PBFT [24]
1: import Common
2: import PbftViewChange
3:
4: Parameters:
5: id // The node identity
6: f // Number of faults tolerated
7: RequestTimeout // Timeout to prevent waiting indefinitely for q request to commit
8: w // Low watermark, advances at checkpoints
9: W // High watermark, advances at checkpoints

10:
11: Struct Request contains
12: bytes o // Request payload
13: int t // Client timestamp
14: bytes c // Client public key (ID)
15:
16: Init:
17: lv← 0 // Local view number
18: next← 0 // The next available sequence number
19: R← /0 // The set of received requests
20: Preprepare_msgs←{} // A map from (view, sequence number) pairs to PRE-PREPARE messages, initially ⊥
21: Prepare_msgs←{} // A map from (view, sequence number) pairs to a set of unique PREPARE messages
22: Commit_msgs←{} // A map from (view, sequence number) pairs to a set of unique COMMIT messages
23: RequestTimeouts←{} // A map from requests to timers
24:
25: // Handling client request
26: upon receiving 〈REQUEST,r〉σc

27: such that SigVer(r,σc,c)
28: and not (r′ in R s.t. r′.c = r.c and r′.t 6= r.t) do
29: R← R∪{r}
30: RequestTimeouts[r]← schedule RequestTimeout
31:
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Algorithm 2 PBFT (continues)
32: // Sending new PRE-PREPARE message
33: upon |R|> 0 and w <= next <W
34: and common.IsPrimary(id, lv, N) do
35: r← common.GetOldest(R, /0)
36: Send 〈PRE-PREPARE, lv,next,r, id〉 to all nodes
37: next← next +1
38:
39: // Handling PRE-PREPARE message and sending PREPARE message
40: upon receiving pp← 〈PRE-PREPARE,v,n,r, i〉
41: such that common.Valid(lv,v,n,w,W )
42: and common.IsPrimary(i,v,N)
43: and Preprepare_msgs[v,n] =⊥
44: and r in R do
45: Preprepare_msgs[v,n]← pp
46: send 〈PREPARE,v,n,D(r), id〉 to all nodes
47:
48: // Handling PREPARE message
49: upon receiving p← 〈PREPARE,v,n,D(r), i〉
50: such that D(Preprepare_msgs[v,n].r) = D(r)
51: and common.Valid(lv,v,n,w,W ) do
52: Prepare_msgs[v,n]← Prepare_msgs[v,n]∪{p}
53:
54: // Sending COMMIT message
55: upon |Prepare_msgs[lv,n]|= 2 f +1 do
56: r← Preprepare_msgs[lv,n].r
57: send 〈COMMIT, lv,n,D(r), id〉 to all nodes
58:
59: // Handling COMMIT message
60: upon receiving c← COMMIT,v,n,D(r), i〉
61: such that D(Preprepare_msgs[v,n].r) = D(r)
62: and common.Valid(lv,v,n,w,W ) do
63: Commit_msgs[v,n]←Commit_msgs[v,n]∪{c}
64:
65: // Delivering request
66: upon |Commit_msgs[lv,n]|= 2 f +1 do
67: r← Preprepare_msgs[v,n].r
68: R← R\{r}
69: Deliver(n,r)
70: cancel RequestTimeouts[r]
71:
72: // View change on request timeout
73: upon RequestTimeout do
74: lv← lv+1
75: Pb f tViewChange.ViewChange()
76:
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Algorithm 3 PBFT ViewChange
1: import Common
2:
3: Parameters:
4: N // Number of nodes
5: f // Number of faults
6: id // The node identity
7: lv // Local view number
8: P // Map form sequence number to Entry struct for the latest prepared request in previous views
9: Q // Map form sequence number to all Entry structs for a unique preprepared request in previous views

10: C // Local checkpoints
11: h // Latest stable checkpoint
12:
13: Init:
14: Sset←{} // A map from node id to ViewChange message
15: Xset←{} // A map from sequence number to selected value
16: cp←⊥ // Highest stable checkpoint available by a f+1 nodes
17:
18: Struct Request contains
19: n // Sequence number
20: d // Request digest
21: v // View
22:
23: // Handling VIEWCHANGE message
24: upon receiving m← VIEWCHANGE,v,h,C,P,Q, i,σi〉
25: such that SigVer(m,σi, i.pk)
26: V [i]← m
27: if |Sset| ≥ 2 f +1
28: CalculateHighCheckpoint(Sset)
29: CalculateXset(Sset) 5

30: if Xset 6= {} // If the Xset is successfully calculated
31: send 〈NEWVIEW,v,Sset,Xset,cp, id,σid〉 to all nodes
32: end if
33: end if
34:
35: // Handling NEWVIEW message
36: upon receiving m← NEWVIEW,v,S,X ,cp′, i,σi〉
37: such that SigVer(m,σi, i.pk)
38: CalculateHighCheckpoint(S)
39: CalculateXset(S)
40: if Xset = X and cp = cp′ // Verify NEWVIEW
41: for all (n,r) ∈ Xset do
42: send 〈PREPARE,v,n,D(r), id〉 to all nodes
43: end for
44: end if
45:
46: function ViewChange() :
47: lv← lv+1 // Advance local view
48: p← lv mod N; // Find the new primary
49: send 〈VIEWCHANGE, lv,h,C,P,Q, id,σid〉 to p
50:
51: function CalculateHighCheckpoint(V ) :
52: cp← cp′|cp′ the highest checkpoint in m.C(∀m ∈ Sset) and at least f +1 nodes have a checkpoint in cp′.
53:
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Algorithm 3 PBFT ViewChange (continues)
54: function CalculateXset(V ) :
55: L← the highest sequence number in m.P(∀m ∈ Sset)
56: for all n such that cp < n≤ L do
57: if ∃m ∈ Sset with 〈n,d,v〉 ∈ m.P
58: such that ∃2 f +1 messages m′ ∈ Sset
59: such that m′.h < n
60: and ∀〈n,d′,v′〉 ∈ m′.P
61: such thatv′ < v or (v′ = v and d′ = d)
62: and ∃ f +1 messages m′ ∈ Sset
63: such that ∃〈n,d′,v′〉 ∈ m′.Q
64: such that v′ ≥ v and d′ = d
65: X [n]← request with digest d // Request with digest d could have been prepared for n
66: else if ∃2 f +1 messages m ∈ Sset
67: such that m.h < n and m.P has no entry for n
68: X [n]←⊥ // No request could have been prepared for n
69: else
70: Xset←{} // Not enough VIEWCHANGE messages
71: return
72: end if
73: end for
74:

7 Mir Correctness

In this section we outline the Mir correctness proof, proving
TOB properties as defined in Section 2. We pay particular
attention to Liveness (Section 7.5), as we believe it is the least
obvious out of four Mir TOB properties to a reader knowl-
edgeable in PBFT. Where relevant, we also consider the
impact of the signature verification sharding (SVS) optimiza-
tion (Sec. 5.6).

7.1 Validity (P1)
(P1) Validity: If a correct node delivers r, then some client
broadcast r.

Proof (no SVS). We first show that Validity holds, without
signature verification sharding. If a correct node delivers r,
then at least n− f nodes sent COMMIT for a batch which
contains r which includes at least n− 2 f ≥ f + 1 correct
nodes (Sec. 3). Similarly, if a correct node sends COMMIT
for a batch which contains r, then at least n− 2 f ≥ f + 1
correct nodes sent PREPARE after prepreparing a batch
which contains r (Sec. 5.3). This implies at least f +1 correct
nodes executed Condition (8) in Sec. 5.3 and verified client’s
signature on r as correct. Validity follows.

Proof (with SVS). With signature verification sharding
(Sec. 5.6), clients’ signatures are verified by at least f + 1
verifier nodes belonging to the leaderset, out of which at least
one is correct. As no correct node sends COMMIT before
receiving PREPARE from all f +1 verifier nodes (Sec. 5.6),
no request which was incorrectly signed by a client can be

committed and, subsequently, delivered. Validity follows.

7.2 Agreement (Total Order) (P2)
(P2) Agreement: If two correct nodes deliver requests r and
r′ with sequence number sn, then r = r′.

Proof. Assume by contradiction that there are two correct
nodes i and j which deliver, respectively, r and r′ with the
same sequence number sn, such that r 6= r′. Without loss of
generality, assume i delivers r with sn before j delivers r′ with
sn (according to a global clock not accessible to nodes), and
let i (resp., j) be the first correct node that delivers r (resp.,
r′) with sn.

By the way we compute request sequence numbers (see
Sec. 5.3, In-order delivery), the fact that i and j deliver differ-
ent requests at the same (request) sequence number implies
they commit different batches with same (batch) sequence
number. Denote these different batches by B and B′, respec-
tively, and the batch sequence number by bsn.

We distinguish several cases depending on the mechanism
by which i (resp., j) commits B (resp B′). Namely, in Mir, i
can commit req contained in batch B in one of the following
ways (commit possibilities (CP)):

CP1 by receiving a quorum (n− f ) of matching COMMIT
messages in the common case of an epoch for a fresh
batch B (a fresh batch here is a batch for which a leader
sends a PRE-PREPARE message — see Sec. 3 and
Sec. 5.3)

CP2 by receiving a quorum (n− f ) of matching COMMIT
messages following an ungracious epoch change, where
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Algorithm 4 Mir
1: import Common
2: import PbftViewChange
3: import ReliableBroadcast
4:
5: Parameters:
6: id // The node identity
7: f // Number of faults tolerated
8: w // Low watermark, advances at checkpoints
9: W // High watermark, advances at checkpoints

10: NumBuckets // Number of buckets
11: BucketsPerLeader // The number of buckets per leader when all nodes are leaders
12: RedistributionPeriod // Bucket re-distribution period
13: E phemeralE pLen // Number of sequence numbers in an ephemeral epoch
14:
15: Struct Request contains
16: o // Request payload
17: t // Client timestamp
18: c // Client identity (public key)
19:
20: Struct Client contains
21: H // Client high watermark, advances at checkpoint
22: L // Client low watermark, advances at checkpoint
23:
24: Struct E pochCon f ig contains
25: First // First sequence number of the epoch
26: Last // Last sequence number of the epoch
27: Leaders // List of leaders of the epoch
28: PrimaryBuckets // Buckets the primary chose for itself
29:
30: Init:
31: le← 0 // Local epoch number
32: next← id // The next available sequence number
33: Buckets← Set of NumBuckets empty buckets // Each bucket is a FIFO queue of received requests
34: Clients←{} // A map from client identity (public key) to a Client structure
35: Preprepare_msgs←{} // A map from (epoch, sequence number) pairs to PRE-PREPARE messages
36: Prepare_msgs←{} // A map from (epoch, sequence number) pairs to a set of unique PREPARE messages
37: Commit_msgs←{} // A map from (epoch, sequence number) pairs to a set of unique COMMIT messages
38: Pendng← /0 // A set of proposed but not committed requests
39: Preprepared← /0 // A set of preprepared requests to prevent duplicates
40: committed←{} // A map from (epoch, sequence number) pairs to committed requests, initially ⊥
41: delivered←{} // A map from (epoch, sequence number) booleans
42: E pochChangeTimeouts // List of timers per sequence number for epoch change
43: E pochCon f ig← [] // List of epoch configurations
44: for all bucket ∈ Buckets do
45: bucket← /0

46: end for
47: E pochCon f ig[0].First = 0
48: E pochCon f ig[0].Last = ∞

49: E pochCon f ig[0].Leaders = Nodes
50: E pochCon f ig[0].PrimaryBuckets = arbitrary dNumBuckets/Nodese buckets
51: ActiveBucketAssignment(0,E pochCon f ig[0])
52: E pochChangeTimeouts[0]← start E pochChangeTimeout // Start a timer for the first sequence number
53: start PreprepareTimeout // Start a timer for a new preprepare
54:
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Algorithm 4 Mir (continues)
55: // Handling client request
56: upon receiving 〈REQUEST,r〉σc

57: such that SigVer(r,σc,r.c)
58: and Clients[r.c].L <= r.t <Clients[r.c].H do
59: bucket← GetBucket(H(t||c))
60: if @r′ ∈ bucket : r′.c = r.c∧ r′.t = r.t then
61: bucket.append(r)
62: end if
63:
64: // Sending new PRE-PREPARE message
65: upon (|ActiveBuckets(i, le,next)\Pending|> 0 or PreprepareTimeout) // The active bucket is not empty
66: // or the timeout for a new PRE-PREPARE has elapsed
67: and w <= next <W // The next seq no is in the watermark window
68: and ActiveDistribution(le,next) // All seq nos from the previous re-distribution are delivered
69: and n≤ E pochCon f ig[le].Last do // The next seq no is in the current epoch
70: if |ActiveBuckets(i, le,next)\Pending|> 0 then // The active bucket is not empty
71: r← common.GetOldest(ActiveBuckets(i, le,next)\Pendng,Preprepared)
72: Pending← Pending∪{r}
73: else
74: r←⊥ // Sending PRE-PREPARE with special nil request
75: end if
76: send 〈PRE-PREPARE, le,next,r, id〉 to all nodes
77: next← next + |E pochCon f ig[le].Leaders)|
78: reset PreprepareTimeout
79:
80: // Handling PRE-PREPARE message and sending PREPARE message
81: upon receiving pp← 〈PRE-PREPARE,e,n,r, i〉
82: such that common.Valid(le,e,n,w,W ) // Valid sequence number and epoch number Sec. 5.3(1),(4)
83: and Preprepare_msgs[e,n] =⊥) // No other batch is preprepared with sn in epoch e Sec. 5.3(1)
84: and Leads(i,e,n) // Node i is in the leadeset of epoch e Sec. 5.3(2) and leads sn Sec. 5.3(3)
85: and H(r.o||r.t||r.c) not in Preprepared // The request is not already preprepared Sec. 5.3(5)
86: and Clients[r.c].L <= r.t <Clients[r.c].H // The client timestamp is within the client’s watermark window Sec. 5.3(6)
87: and H(r.t||r.c) in ActiveBuckets(i,e,n) // The request belongs to an active bucket for i Sec. 5.3(7)
88: and SigVer((r,r.σc,r.c) do // The request was a valid signature Sec. 5.3(8)
89: Preprepared← Preprepared∪{r}
90: Preprepare_msgs[e,n]← pp
91: send 〈PREPARE,v,n,D(r), id〉 to all nodes
92:
93: // Handling PREPARE message
94: upon receiving p← 〈PREPARE,e,n,D(r), i〉
95: such that D(Preprepare_msgs[e,n].r) = D(r)
96: and common.Valid(le,e,n,w,W ) do
97: Prepare_msgs[e,n]← Prepare_msgs[e,n]∪{p}
98:
99: // Sending COMMIT message
100: upon |Prepare_msgs[le,n]|= 2 f +1 do
101: r← Preprepare_msgs[e,n].r
102: send 〈COMMIT, le,n,D(r), id〉 to all nodes
103:
104: // Handling COMMIT message
105: upon receiving c← 〈COMMIT,e,n,D(r), i〉
106: such that D(Preprepare_msgs[e,n].r) = D(r)
107: and common.Valid(le,e,n,w,W ) do
108: Commit_msgs[e,n]←Commit_msgs[e,n]∪{c}
109:
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Algorithm 4 Mir (continues)
110: // Committing a request
111: upon |Commit_msgs[e,n]|= 2 f +1 do
112: r← Preprepare_msgs[e,n].r
113: committed[e,n]← r
114: Pending← Pending\{r}
115: GetBucket(H(r.t||r.c)).remove(r) // Removing request from bucket
116: E pochChangeTimeouts[n+1]← start E pochChangeTimeout // Epoch-change timer for the next sequence number
117:
118: // In-order request delivery
119: upon committed[le,n] 6=⊥ and delivered[n−1] do // The previous sequence number must be already delivered
120: Deliver(n,r)
121: delivered[n]← True
122: cancel E pochChangeTimeouts[n] // Cancelling the new epoch-change timer for n
123:
124: // Epoch change timeout
125: upon E pochChangeTimeout do
126: PBFTViewChange.ViewChange() // Algorithm 3: PBFT view change
127:
128: // Reliable broadcasts of new epoch configuration on gracious epoch change
129: upon delivered[EpochConfig[e].Last] // all sequence numbers of the epoch are delivered
130: and common.IsPrimary(id, e+1, N) do
131: E pochCon f ig[e+1].Leaders← E pochCon f ig[e].Leaders∪{id} // the primary adds itself in the leaderset
132: E pochCon f ig[e+1].PrimaryBuckets
133: ← dNumBuckets/Nodese buckets containing the oldest requests // primary’s preferred buckets
134: E pochCon f ig[e+1].First← E pochCon f ig[e].Last +1
135: ifE pochCon f ig[e+1].Leaders = Nodes then // if all nodes are in the leaderset
136: E pochCon f ig[e+1].Last← ∞ // the next epoch is stable
137: else
138: E pochCon f ig[e+1].Last
139: ← E pochCon f ig[e+1].First + ephemeralE pLen
140: end if
141: ReliableBroadcast.Broadcast(E pochCon f ig[e+1],e+1)
142:
143: // Reliable broadcast of new epoch configuration on ungracious epoch change
144: upon sending PBFT NEW-EPOCH message for epoch e+1 do
145: E pochCon f ig[e+1].Leaders← ShrinkingLeaderset(e+1, id)
146: E pochCon f ig[e+1].PrimaryBuckets
147: ← dNumBuckets/Nodese buckets containing the oldest requests
148: E pochCon f ig[e+1].First← E pochCon f ig[e].Last +1
149: E pochCon f ig[e+1].Last← E pochCon f ig[e+1].First + ephemeralE pLen
150: ReliableBroadcast.Broadcast(E pochCon f ig[e+1],e+1)
151:
152: // Gracious epoch change
153: upon ReliableBroadcast.Delivered(E pochCon f ig,e) and le = e do
154: E pochCon f ig[e]← E pochCon f ig
155: if ∃k : E pochCon f ig[e].Leaders[k] = id then
156: next← E pochCon f ig[e].First + k
157: end if
158: ActiveBucketAssignment(e,E pochCon f ig)
159:
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Algorithm 4 Mir (continues)
160: upon sending or receiving PBFT NEW-EPOCH message do
161: Process the message according to Algorithm 3
162: // Request resurrection
163: for all r ∈ Preprepared do
164: if r not in NEW-EPOCH then
165: Preprepared← Preprepared \{r} // Uncommitted requests, inserted in the set in a previous epoch
166: end if
167: end for
168: for all r ∈ Preprepared do
169: if r not in NEW-EPOCH then
170: Pending← Pending\{r} // Uncommitted requests, inserted in the set in a previous epoch
171: end if
172: end for
173: for all r ∈ PBFT NEW-EPOCH do
174: Preprepared← Preprepared∪{r} // Marking again the requests in the message as preprepared
175: end for
176:
177: function Leads(i,e,n) : // Returns True if i is leader of n in epoch e
178: if i in E pochCon f ig[e].Leaders then
179: return ((E pochCon f ig[e].First +n) mod |E pochCon f ig[e].Leaders|) = i
180: else
181: return False
182: end if
183:
184: function GetBucket(hash) :
185: Returns the bucket containing requests r such that H(r.t||r.c) = hash.
186:
187: function ActiveBucketAssignment(e,E pochCon f ig) :
188: Evenly partition Buckets\E pochCon f ig.PrimaryBuckets
189: among E pochCon f ig.Leaders\{i : common.IsPrimary(i,e,N)}
190:
191: function ActiveBuckets(i,e,n) :
192: Returns the union of buckets which are active for node i in epoch e and sequence number n
193:
194: // ActiveDistribution returns true if all the sequence numbers from the previous re-distribution are delivered
195: function ActiveDistribution(e,n) :
196: period← RedistributionPeriod
197: distribution← dn− (E pochCon f ig[e−1].Last)/periode
198: return delivered[E pochCon f ig[e−1].Last +(distribution−1)∗ period]
199:
200: function ShrinkingLeaderset(e, i) :
201: elast ← the last epoch for which i has the configuration
202: Leaders← E pochCon f ig[elast ].Leaders∪{i}
203: RemovedLeaders← a random set of min((e′− e),1) nodes from E pochCon f ig[elast ].Leaders\{i}
204: return Leaders\RemovedLeaders
205:
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NEW-EPOCH message contains B (Sec. 5.4.1),

CP3 via the state transfer sub-protocol (Sec. 5.7).

As i is the first correct node to commit request r with sn
(and therefore batch B with bsn), it is straightforward to see
that i cannot commit B via state transfer (CP3). Hence, i
commits B by CP1 or CP2.

We now distinguish several cases depending on the CP by
which j commits B′. In case j commits B′ by CP1 or CP2,
since Mir common case follows the PBFT common case, and
Mir ungracious epoch change follows PBFT view change —
a violation of Agreement in Mir implies a violation of Total
Order in PBFT. A contradiction.

The last possibility is that j commits B′ by CP3 (state trans-
fer). Since j is the first correct node to commit B′ with bsn,
j commits B′ after a state transfer from a Byzantine node.
However, since (1) Mir CHECKPOINT messages (see Sec. 5.5)
which are the basis for stable checkpoints and state trans-
fer (Sec. 5.7) are signed, and (2) stable checkpoints contain
signatures of 2 f + 1 nodes including at least f + 1 correct
nodes, j is not the first correct node to commit B′ with bsn. A
contradiction.

7.3 No Duplication (P3)
(P3) No duplication: If a correct node delivers request r
with sequence numbers sn and sn′, then sn = sn′.

Proof. No-duplication stems from the way Mir prevents
duplicate preprepares (condition (5) in accepting PRE-
PREPARE, as detailed in Sec. 5.3).

Assume by contradiction that two identical requests req
and req′ exist such that req = req′ and correct node j delivers
req (resp., req′) with sequence number sn (resp., sn′) such
that sn 6= sn′.

Then, we distinguish the following exhaustive cases:

• (i) req and req′ are both delivered in the same batch.

• (ii) req and req′ are delivered in different batches.

In case (i), assume without loss of generality that req pre-
cedes req′ in the same batch. Then, by condition (5) for
validating a PRE-PREPARE (Sec. 5.3), no correct node
preprepares req′ and all correct nodes discard the batch which
hence cannot be delivered, a contradiction.

In case (ii) denote the batch which contains req by B and
the batch which contains req′ by B′. Denote the set of at
least n− f ≥ 2 f + 1 nodes that prepare batch B by S and
the set of at least n− f ≥ 2 f +1 that prepare batch B′ by S′.
Sets S and S′ intersect in at least n− 2 f ≥ f + 1 nodes out
of which at least one is correct, say node i. Assume without
loss of generality that i preprepares B before B′. Then, the
following argument holds irrespectivelly of whether i delivers

batch B before B′, or vice versa: as access to data structure
responsible for implementing condition (5) is synchronized
with per-bucket locks (Sec. 5.10) and since req and req′ both
map to the same bucket, as their hashes are identical, i cannot
preprepare req′ and hence cannot prepare batch B′ which
cannot be delivered — a contradiction.

It is easy to see that signature verification sharding opti-
mization does not impact the No-Duplication property.

7.4 Totality (P4)
Lemma 1. If a correct node delivers a sequence number sn,
then every correct node eventually delivers sn.

Proof. Assume, by contradiction, that a correct node j never
delivers any request with sn. We distinguish 2 cases:

1. sn becomes part of a stable checkpoint of a correct node
k. In this case, at the latest after GST j enters the state
transfer protocol (see Sec. 5.7), and transfers the missing
batches, including the batch with sequence number sn,
from some correct node. Such a node exists, because
at least k is such a node. Moreover, j gets batch hash
confirmations from f additional nodes that signed the
stable checkpoint sn belongs to. At this point j can
deliver all sequence numbers up to the stable checkpoint,
obtained with the state transfer protocol, including sn,
because j transfers all sequence numbers up to the stable
checkpoint without gaps. A contradiction.

2. sn never becomes part of a stable checkpoint. Then, the
start of the watermark window will never advance past
sn, and all correct nodes, at latest when exhausting the
current watermark window, will start infinitely many un-
gracious epoch changes without any of them committing,
and therefore delivering, any requests. Correct nodes
will always eventually exhaust the sequence numbers
in their current watermark window, since even in the
absence of new client requests, correct leaders periodi-
cally propose a special nil request (in practice, an empty
batch) (see Algorithm 4, line 74). Infinitely many ungra-
cious epoch changes without committing any requests,
however, is a contradiction to PBFT liveness.

(P4) Totality: If a correct node delivers request r, then every
correct node eventually delivers r.

Proof. Let i be a correct node that delivers r with sequence
number sn. Then, by (P2) Agreement, no correct node can
deliver another r′ 6= r with sequence number sn. Therefore,
all other correct nodes will either deliver r with sn or never
deliver sn. The latter is a contradiction to Lemma 1, since i
delivered some request with sn, all correct nodes deliver some
request with sn. Totality follows.
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7.5 Liveness (P5)
We first prove a number of auxiliary Lemmas and then prove
liveness.

Lemma 2. In an execution with a finite number of epochs,
the last epoch elast is a stable epoch.

Proof. Assume by contradiction that elast is not stable, this
implies either:

1. a gracious epoch change from elast at some correct node
and hence, elast is not the last – a contradiction; or

2. ungracious epoch change from elast never completes —
since Mir ungracious epoch change protocol follows
PBFT view change protocol, this implies liveness viola-
tion in PBFT. A contradiction.

Lemma 3. If a correct client broadcasts request r, then every
correct node eventually receives r and puts it in the respective
bucket queue or delivers r.

Proof. The lemma follows by assumption of a synchronous
system after GST and by the correct client sending and pe-
riodically re-sending request to all nodes until a request is
delivered (see Section 5.1).

Lemma 4. If, after GST, all correct nodes start executing the
common-case protocol in a non-stable epoch e before time t,
then there exists a ∆, such that if a correct leader proposes
a batch B before time t and no correct node enters an epoch
change before t +∆, every correct node commits B.

Proof. Let δ be the upper bound on the message delay after
GST and let a correct leader propose a request r before t. By
the common-case algorithm without SVS (there is no SVS
in a non-stable epoch e) all correct nodes receive at least
2 f +1 COMMIT messages for r before t +3δ (time needed
to transmit PRE-PREPARE, PREPARE and COMMIT).
All correct nodes will accept these messages, since they all
enter epoch e by time t. As every correct node receives at
least 2 f + 1 COMMITs, every correct node commits r by
t +3δ. Therefore, ∆ = 3δ.

Lemma 5. If a correct node commits a batch which includes
request r, then i eventually delivers r.

Proof. Let us assume that r is committed by i in a batch with
sequence number bsn. Then, for bsn not to be delivered, there
exists some batch with sequence number bsn′ < bsn which is
never delivered by i. Otherwise, i commits all batches with a
sequence number bsn′ < bsn and, therefore, i can deliver the
batch with sequence number bsn which includes r (see Alg. 4,
Line 119).

We distinguish two cases.

1. There exists some correct node that delivers a batch with
sequence number bsn′.

2. No correct node delivers a batch with sequence number
bsn′.

In the first case, by Lemma 1, every correct node, including
i, delivers (and thus commits) a batch with sequence number
bsn′. To deliver a batch, a node must have committed it (see
Alg. 4, Line 119).

In the second case, similarly to the argumentation in the
second case in Lemma 1, the start of the watermark window
in any correct node will never advance beyond bsn′, leading
to infinitely many epoch changes, without committing any
request. A contradiction to PBFT liveness.

Lemma 6. During a single epoch, a correct node does not
propose the same request more than once.

Proof. After a request r is proposed the first time in an epoch,
until the end of that epoch there are two mutually exclusive
cases. A proposed request r is either pending or committed
(included in a committed batch) (Alg. 4: Line 72, Alg. 4:
Line 114).

In the first case, a correct node does not propose r because
it is marked as pending (Alg. 4: Line 71). r can be un-
marked pending without being committed only with request
resurrection. However, resurrection can only occur during an
epoch change and thus the second proposal cannot happen in
the same epoch as the first.

In the second case, r, upon being committed in a batch at
some correct node i, i removes r from its bucket queue (Alg. 4:
Line 115). If r is committed by i then r is also preprepared by
i and i will not propose r again (Alg. 4: Line 71). Moreover,
i does not remove r from the preprepared set with request
resurrection within an epoch, because, as in the previous case,
this requires an epoch change.

In either of the cases i does not propose r again in the same
epoch.

Lemma 7. If a correct node proposes a batch b in epoch e
with sequence number sn, then no correct node delivers a
batch b′ 6= b with sn in epoch e.

Proof. Let us denote by i the node that proposes b in epoch
e.

Assume, by contradiction, that some correct node j, includ-
ing the case where i = j, delivers b′ with sn in epoch e. Then
j must have preprepared b′ in the same epoch e; otherwise j
cannot commit b′ in e and, consequently, delivered it. Since
i is the leader of sequence number sn in epoch e, j does not
preprepare a batch proposed by any node other than i in e
(see Alg. 4, Line 84). Therefore, j can preprepare b′ with
sequence number sn only if i proposes sn. However, i, being
a correct node, proposes only one batch per sequence number,
and by lemma statement we know that that is b. This is a
contradiction to b′ 6= b.
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Lemma 8. When node i is assigned the bucket of request r
in epoch e, i has not proposed r in e and i has marked r as
preprepared, then i has delivered r.

Proof. Let us assume that i preprepared r. There exist two
mutually exclusive cases for request r. Either i preprepared
r in some previous epoch e′ < e or i preprepares r in e. We
exhaustively show that in both cases, either i has delivered r
or i has un-marked r from being preprepared.

1. i preprepared r in epoch e′ < e. There are two possible
cases.

(a) i delivered r in e′. The lemma follows.

(b) i did not deliver r in e′. In this case, since an epoch
change occurred, i resurrected r at the end of e′

(Algorithm 4, lines 162-176), and, therefore, un-
marked r as preprepared.

2. i preprepared r in e. Then some node proposed r in
epoch e. There are two sub-cases to distinguish.

(a) i proposed r. This cannot happen by the statement
of the lemma.

(b) Some other node j proposed r. Here we distinguish
again cases.

i. i already delivered r. The lemma follows.
ii. i did not deliver r. This means that the batch

with r is still considered in-flight by i and,
therefore, i bucket re-distribution could not
have happened at i (Alg. 4, Line 68) since j
was assigned the bucket of r. Therefore, i is
not assigned the bucket of r. A contradiction
to i being assigned the bucket of r (from the
premise of the lemma).

Lemma 9 (Liveness with Finitely Many Epochs). In an ex-
ecution with a finite number of epochs, if a correct client
broadcasts request r, then some correct node eventually de-
livers r.

Proof. Assume, by contradiction, that no correct node deliv-
ers r. This implies that no correct node delivers r in the last
epoch elast .

By Lemma 2, elast is an infinite, stable epoch. Therefore
all nodes, including i, are leaders. Since the epoch is infinite
and the sequence numbers of the epoch are distributed to the
leaders in a round robin way (Alg. 4, Line 179), i will propose
infinitely often.

By Lemma 6, and since the oldest request is always pro-
posed first (Alg. 4, Line 179), i will eventually have proposed
all requests older than r and r will be the oldest request in i’s
bucket queues.

Next time i proposes a batch from r’s bucket we distinguish
two cases.

1. i has already proposed r in some batch b in elast .

2. i has not proposed r in elast .

In the second case, by Lemma 8, r is not marked as pre-
prepared at i. Since r is the oldest request and i is proposing
from r’s bucket, i will propose r in its next batch b (see also
Sec 5.3, PRE-PREPARE paragraph).

Let sn be the sequence number of batch b. From our con-
tradiction statement, we have that b will never be delivered.
By Lemma 7, b is the only batch that can be delivered with
sn in elast . Therefore, no batch can be delivered with sn. This
will trigger an epoch change timeout at all other correct nodes,
causing an epoch change. A contradiction to elast being sta-
ble.

Definition 1 (Preferred request). Request r is called preferred
request in epoch e, if r is the oldest request in the bucket
queues of the primary node of epoch e, before the primary
proposes its first batch in e.

Lemma 10. If all correct nodes perform an ungracious epoch
change from e to e+ 1 and the primary of e+ 1 is correct,
then all correct nodes reliably deliver the epoch configuration
of e+1.

Proof. Let p be the correct primary of e+1. As p is correct,
by the premise, p participated in the ungracious epoch change
sub-protocol. Since the PBFT view change protocol is part of
the ungracious view change, p sends a NEW-EPOCH mes-
sage to all nodes. By the algorithm (Algorithm 4, line 150), p
reliably broadcasts the epoch configuration of e+1. Since all
correct nodes participate in the ungracious view change, all
correct nodes enter epoch e+1. By the properties of reliable
broadcast, all correct nodes deliver the epoch configuration
in e+1 (Algorithm 4, line 153).

Lemma 11. There exists a time after GST, such that if each
correct node reliably delivers the configuration of epoch e
after entering e through an ungracious epoch change, and
the primary of e is correct, then all correct nodes commit e’s
preferred request r.

Proof. Let p be the primary of epoch e, and C the epoch con-
figuration p broadcasts for e. By the algorithm, the leaderset
in C does not contain all nodes (and thus SVS is disabled in
e), as all correct nodes entered e ungraciously. Since (by the
premise) all correct nodes deliver C, all correct nodes will
start participating in the common-case agreement protocol in
epoch e. Let t f and tl be the time when, respectively, the first
and last correct node does so.

By the algorithm, p proposes r immediately in some batch
B when entering epoch e, and thus at latest at tl . Then, by
Lemma 4, there exists a ∆ such that all correct nodes commit
r, as part of B, if none of them initiates a view change before
tl +∆.
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Eventually, after finitely many ungracious epoch changes,
where all correct nodes double their epoch change timeout val-
ues (as done in PBFT [24]), all correct nodes’ epoch change
timeout will be greater than (tl − t f )+∆. Then, even if a
node i enters epoch e and immediately starts its timer at t f , i
will not enter view change before tl +∆ and, thus, all correct
nodes will commit r in epoch e.

Lemma 12. There exists a time after GST, such that if all
correct nodes perform an ungracious epoch change from e to
e+1, and the primary of e+1 is correct, then some correct
node commits preferred request in e+1.

Proof. Follows from Lemmas 10 and 11.

Lemma 13. In an execution with infinitely many epochs there
exists an infinite number of pairs of consecutive epochs with
correct primaries.

Proof. Epoch primaries succeed each other in a round robin
way across all the lexicographically ordered nodes of the
system (see Sec. 4 and Sec. 2). Assume such pair of two
consecutive epochs with correct primaries never exists after
some epoch e. Then, in every full rotation across all 3 f +1
nodes after e, there exists an epoch with a faulty primary
node between every two epochs with correct primaries, which
implies the number of faulty nodes to be greater than f . A
contradiction.

Lemma 14. There exists a time after GST, such that for any
pair of consecutive epochs e and e+1 with correct primaries
i and j (respectively), some correct node commits at least one
of the preferred requests in e and e+1.

Proof. Let re (resp., r′e) be preferred request in e (resp., e′).
For the epoch change from e to e+1 there are two exhaustive
possibilities.

1. At least one correct node performs a gracious epoch
change from e to e+1. Recall that Mir requires the pri-
mary of an epoch to be in the leaderset (Section 4). As
e graciously ends at at least one correct node, it fol-
lows from the specification of the gracious epoch change
(Section 5), that at least one node commits all requests
proposed in e.

Since, by the protocol, the primary of e is in the lead-
erset of e and the correct primary always proposes the
preferred request, at least one correct node commits the
preferred request of e.

2. No node performs a gracious epoch change. By
Lemma 12.

(P5) Liveness: If a correct client broadcasts request r, then
some correct node eventually delivers r.

Proof. We distinguish two cases:

1. In an execution with a finite number of epochs, Liveness
follows from Lemma 9.

2. Consider now an execution with an infinite number of
epochs. By Lemma 3, every correct node eventually
receives r. Let P be the set of all requests that some cor-
rect node received before it received r. After r has been
received by all correct nodes, following from Definition
1, if r′ 6= r is a preferred request, then r′ ∈ P. By Lemma
14, however, all such requests r′ will eventually be com-
mitted by all correct nodes. Therefore, by Definition 1,
unless r is committed earlier by some correct node, r will
eventually become the preferred request of all epochs
with correct primaries, and will be committed by some
correct node by Lemma 14. Finally, by Lemma 5 r will
be delivered by some correct node.

(P6) In-order delivery: If a correct node i delivers some
request r with sequence number sn, then i has delivered
requests for each sequence number sn′, such that sn′ < sn.

Proof. This property is trivially guaranteed by the way the
protocol is designed. A correct node delivers a batch with
sequence number bsn only after it has delivered all batches
with sequence numbers bsn′ with bsn′ < bsn (see Sec. 5.3,
In-order delivery and Algorithm 4, line 119). Moreover, the
request sequence numbers are assigned with a contiguous,
monotonically increasing function (see Sec. 5.3, In-order
delivery). In-order delivery follows.

8 LTO: Optimization for large requests

When the system is network-bound (e.g., with large requests,
such as those found in Hyperledger Fabric and/or on a WAN)
the maximum throughput is driven by the amount of data each
leader can send in a PRE-PREPARE message. However,
data, i.e., request payload, is not critical for total order, as
the nodes can establish total order on request hashes. While
in many blockchain systems all nodes need data [1, 3], in
others [11], ordering is separated from request execution and
full payload replication across ordering nodes is unnecessary.

For such systems, Mir optionally boosts throughput using
what we call Light Total Order (LTO) broadcast. LTO is
defined in the same way as TO broadcast (Sec. 2) except that
LTO requires property P4 (Totality) to hold for the hash of
the request H(r) (instead for request r).

P4 Totality: If a correct node delivers a request r or a
request hash H(r), then every correct node eventually
delivers H(r).
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On a high level, LTO follows a similar pattern as SVS
(Sec. 5.6) and applies to Mir only in stable epoch. A leader
only sends a full PRE-PREPARE message to a subset of
f +1 replica nodes. To the remaining 2 f observer nodes, the
leader sends a lightweight PRE-PREPARE message where
request payloads are replaced with their hashes.

Inside the Mir (and PBFT) common-case (Sec. 5.3) sub-
protocol, before sending a COMMIT message, a node waits
to receive at least 2 f + 1 PREPARE messages, such that
f +1 of them are from the replica nodes. This ensures that at
least one correct (replica) node has the full payload.

LTO has minor impact on PBFT view change (Mir epoch
change) as a new primary might have a hash of the batch
(lightweight PRE-PREPARE) but not the full batch payload.
To this end, our Mir-LTO makes the primary in this situation
look for the payload at f + 1 replicas, which is guaranteed
not to block liveness after GST and with the correct primary.

Max batch size 2 MB (4000 requests)
Cut batch timeout 500 ms (n < 49), 1s(n = 49),

2s(n = 100)
Max batches
ephemeral epoch 256 (n≤ 16), 16∗n (n > 16)
Bucket re-distribution period 256 (n≤ 16), 16∗n (n > 16)
Buckets per leader (m) 2
Checkpoint period 128
Watermark window size 256
Parallel gRPC connections 5 (n = 4), 3 (n = 10),

1 (n > 10)
Client signatures 256-bit ECDSA

Table 3: Mir configuration parameters used in evaluation

9 Evaluation

In this section, we report on experiments we conducted
in scope of Mir performance evaluation, which aims at
answering the following questions:
(Sec. 9.1) How does Mir scale on a WAN?
(Sec. 9.2) How does Mir scale in clusters?
(Sec. 9.3) What is the impact of optimizations (SVS, LTO)
and bucket re-distribution and what are typical latencies of
Mir?
(Sec. 9.4) What is the benefit of Mir duplication prevention?
(Sec. 9.5) How does Mir perform under faults and attacks
(crash faults, censoring attacks, straggler attacks)?

Experimental Setup. Our evaluation consists of microbench-
marks of 500 byte requests, which correspond to average
Bitcoin tx size [7]. These are representative of Mir perfor-
mance, both absolute and relative to state of the art. We also
evaluate Mir in WAN for larger 3500 byte requests, typical
in Hyperledger Fabric [11] to better showcase the impact of
available bandwidth on Mir.

We generate client requests by increasing the number of
client processes and the request rate per client process, until
the throughput is saturated. We report the throughput just
below saturation. The client processes estimate which node
i has an active bucket for each of their requests and initially
send each request only to nodes i− 1, · · · , i+ k, where k ≤
f −1, i.e., to f +1 nodes.

We compare Mir to a state-of-the-art PBFT implementation
optimized for multi-cores [16]. For fair comparison, we use
the Mir codebase tuned to closely follow the PBFT implemen-
tation of [16] (see also Section 4, paragraph “Generalization
of PBFT and Emulation of Other BFT Protocols”) hardened,
as Mir, to implement Aardvark [25] (client signatures instead
of MAC vectors and separate network interface for client
requests and protocol messages). As another baseline, we
compare the common case performance of Chain, an opti-
mistic sub-protocol of the Aliph BFT protocol [12] with linear
common-case message complexity, which is known to be near
throughput-optimal in clusters, although it is not robust and
needs to be abandoned in case of faults [12]. In this sense,
Chain is not a competitor to Mir, but rather an upper bound on
performance in a cluster. Our PBFT and Chain implementa-
tions have the same batching mechanism as Mir (see Sec. 5.3,
PRE-PREPARE paragraph). Moreover, PBFT and Chain are
always given best possible setups, i.e., PBFT leader is always
placed in a node that has most effective bandwidth and Chain
spans the path with the smallest latency. We further compare
to HotStuff [61] (a recent, popular, O(n) common-case mes-
sage complexity BFT protocol) and Honeybadger [51] using
their open source implementations 6. We present comparison
to HotStuff separately, due to its implementation specifics.
We allow Honeybadger an advantage with using 250 byte
requests, as its open source implementation is fixed to this
request size. We do not compare to unavailable (e.g., Hash-
graph [45], Red Belly [26], RCC [38], OMADA [30]) or
unmaintained (BFT-Mencius [52]) protocols. We, however,
demonstrate the expected effective throughput of Hashgraph,
Red-Belly, BFT-Mencius, RCC, and OMADA under request
duplication, by “switching off” request duplication preven-
tion in Mir, see Sec. 9.4. We further do not compare to single
leader protocols faithfully approximated by PBFT (e.g., BFT-
SMaRt [17], Spinning [57] or by HotStuff (e.g., SBFT [36])
or those that report considerably worse performance than Mir
(e.g., Algorand [35]).

We use virtual machines on IBM Cloud, with 32 x 2.0 GHz
VCPUs and 32GB RAM, equipped with 1Gbps networking
and limited to that value for experiment repeatability, due
to non-uniform bandwidth overprovisioning we sometimes
experienced. Table 3 shows the used Mir configuration pa-
rameters. Unless stated otherwise, Mir uses the signature
verification sharding optimization.

6https://github.com/hot-stuff/libhotstuff at commit
978f39f... and https://github.com/initc3/HoneyBadgerBFT-Python
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Figure 4: Distribution of the 16 datacenters for WAN deployment. Yellow pins indicate the n = 4 deployment.

9.1 Scalability on a WAN

To evaluate Mir scalability, we ran it with up to n = 100 nodes
on a WAN setup spanning 16 distinct datacenters across Eu-
rope, America, Australia, and Asia. Beyond n = 16, we
collocate nodes across already used datacenters. Our 4-node
experiments spread over all 4 mentioned continents. Client
machines are also uniformly distributed across the 16 data-
centers. Figure 4 shows the datacenter distribution.

Figure 5a depicts the common-case (failure-free) stable
epoch performance of Mir, compared to that of PBFT, Chain,
and Honeybadger. We observe that PBFT throughput decays
rapidly, following an O(1/n) function and scales very poorly.
Chain scales better, sustaining 20k req/s, but is limited by the
bandwidth of the “weakest link”, i.e., a TCP connection with
lowest bandwidth across all links between consecutive nodes.
In fact, Chain throughput improves with up to n = 16 nodes
since adding more datacenters yields a path with nodes physi-
cally closer to each other, improving the per TCP connection
bandwidth. Compared to Honeybadger, Mir retains much
higher throughput, even though: (i) Honeybadger request size
is smaller (250 bytes vs 500 bytes), and (ii) Honeybadger
batches are significantly larger (up to 500K requests in our
evaluation). This is due to the fact that Honeybadger is com-
putationally bound by O(n2) threshold signatures verification
and on top of that the verification of the signatures is done
sequentially. Honeybadger’s throughput also suffers from
request duplication (on average 1/3 duplicate requests per
batch), since the nodes choose the requests they add in their
batches at random. Moreover, we report on Honeybadger
latency, which is in the order of minutes (partly due to the
large number of requests per batch and partly due to heavy
computation), significantly higher than that of Mir. In our
evaluation we could not increase the batch size as much as
in the evaluation in [51], especially with increasing the num-

ber of nodes beyond 16, due to memory exhaustion issues.
Finally, in our evaluation PBFT outperforms Honeybadger
(unlike in [51]), as our implementation of PBFT leverages the
parallelism of Mir codebase.

Mir dominates other protocols, delivering 82.5k, roughly
4x the throughput of Chain, with n = 4. The improvement
over Chain throughput is thanks to Mir opening multiple TCP
connections between each pair of nodes and therefore uti-
lizing more effectively the available bandwidth to all nodes.
Multiple TCP connections is a low-level optimization which
is empirically found to increase the effective bandwidth be-
tween two nodes. Importantly, Chain cannot support mul-
tiple TCP connections, since this might violate the FIFO
channels between nodes, on which Chain, unlike Mir, relies.
With n = 100, Mir maintains more than 60k req/s (3x Chain
throughput). Even without the signature verification sharding
optimization (“Mir (noSVS)”) Mir significantly outperforms
other protocols, delivering with n = 4 70.2k req/s (3.5x Chain
throughput) while reaching 31.7k req/s with n = 100 (1.5x
Chain throughput).

Comparison to HotStuff in WANs. We present the com-
parison of Mir to the HotStuff [61] leader-based protocol
separately, in Figure 5b. Despite HotStuff specifying that the
leader disseminates the request payload [61], the available
HotStuff implementation orders only hashes of requests, rely-
ing optimistically on clients for payload dissemination. This
approach is vulnerable to liveness/performance attacks from
malicious clients which can be easily mounted by clients not
sending the requests to all nodes (an attack which the HotStuff
version we evaluated does not address). Besides, the evalu-
ated HotStuff implementation did not authenticate clients at
all (which jeopardizes Validity).

For these reasons and for a fair comparison, we perform an
experiment with: 1) disabled Mir client authentication (i.e,.
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Figure 5: WAN scalability experiments.

client signature verification) and 2) with leaders disseminating
payload hashes (relying on clients to disseminate payload as
in HotStuff). We also increase batch sizes in HotStuff as
much as needed, resulting in up to 32K requests per batch, to
saturate the system.

We observe that HotStuff offers about 2x lower through-
put than Mir with n = 4 nodes bounded by the number of
available network connections, whereas Mir uses multiple
connections among pairs of nodes. As n and number of net-
work connections from the leader grow, HotStuff throughput
first grows until the network at the leader is saturated (with
n = 16 HotStuff performs about 10% better than Mir). How-
ever, as leader bandwidth becomes the bottleneck even with
hash-only ordering, HotStuff’s O(n−1) network-bound scala-
bility starts to show with n > 16, while Mir continues to scale
well and is only computationally bounded by the implemen-
tation. With 100 nodes, Mir orders 110k hashes per second,
compared to roughly 10k hashes per second throughput of
HotStuff.
Experiments with 3500-byte payload. With small request
payload size (500 bytes), CPU overhead related to signature
verification is the primary bottleneck. It is therefore interest-
ing to evaluate the impact on performance with larger requests.
Intuitively, with larger requests, we would be able to stress
the 1Gbps WAN bottleneck of our evaluation testbed. More-
over, large requests are not only of theoretical importance,
some prominent blockchain systems feature relatively large
transaction sizes. For instance, minimum size transaction in
Hyperledger Fabric is about 3.5kbytes [11].

Therefore, we conducted additional WAN experiments with
3500 bytes request size.

For large requests, where network bandwidth is the bottle-
neck, throughput of Mir (with no SVS) reduces to 7k req/s
with 100 nodes, with a drop from 28.3k req/s with n= 4 nodes,
see Figure 6. We attribute this in part to the heterogeneity of
VMs across datacenters (despite the identical specifications)
and, most importantly, to the non-uniform partition of the
available uplink bandwidth. Nevertheless, Mir delivers the
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Figure 6: WAN scalability experiment with large payload
(3500 bytes).

best performance of all protocols to date with 100 nodes on
a WAN, even compared to very optimistic protocols such as
Chain, which delivers consistent throughput of about 4.5k
req/s regardless of number of nodes. Mir is, hence, the first
robust BFT protocol which could be used as an ordering ser-
vice in Fabric with n = 100 nodes, without making ordering
service a bottleneck (validation in Fabric is currently capped
at less than 4k transactions per second [11]).

In addition to Mir (with no SVS), Chain and PBFT, Figure 6
also shows an experimental variant of Mir which implements
what we call Light Total Order (LTO) broadcast, instead of
full TOB (labeled ‘Mir (LTO, noSVS)’). As described in
Section 8, LTO is an optimization, counterpart of SVS, to
help alleviate network bottlenecks in TOB. In short, LTO
broadcast is identical to TOB, except that it provides partial
data availability guaranteeing the delivery of the payload
of every request to at least one correct node. This entails
replicating batch payload to f + 1 nodes in stable epochs,
compared to all nodes without LTO. Other correct nodes get
and agree on the order of cryptographic hashes of requests,
which is the basis for maintaining other TOB properties.

LTO boosts throughput of Mir to 40k 3500-byte req/s with
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Figure 7: Throughput performance of Mir compared to Chain
and PBFT in a single datacenter (500 bytes).

n = 4 nodes (roughly 40% throughput improvement over Mir)
and maintains about 12.5k req/s with n = 100 nodes (70%
throughput improvement over Mir).

9.2 Scalability in a Cluster/Datacenter
Figure 7 depicts fault-free performance in a single datacen-
ter with up to n = 100 nodes. Mir reaches 64% of Chain’s
peak throughput (83k req/s vs 130k req/s). This difference
is due to a difference in client authentication: Mir verifies
clients’ signatures, whereas Chain uses vectors of MACs to
authenticate a request to f +1 replicas (these are vulnerable to
“faulty client” attacks [25]). Recall that Chain is not a robust
protocol itself, but an optimistic sub-protocol of the Aliph
protocol [12]. Indeed, as soon as we add clients’ signatures to
Chain towards a robust version of Chain (denoted by Chain-
Sigs in Fig. 7), Chain’s throughput drops below that of Mir.
Mir maintains more than 80k req/s throughput, significantly
outperforming PBFT.

9.3 Impact of optimizations and bucket re-
distribution

Fig. 8 shows the average latency and throughput of different
flavors of Mir in fault-free executions using n = 16 nodes. We
also show the performance of Chain and PBFT as a reference.
Nodes are distributed over 16 distinct datacenters across the
world.

Mir without signature verification sharding (“Mir (noSVS)”
in Fig. 8) saturates at roughly 53k req/s (resp. 12.3k req/s
for large requests). To evaluate the overhead of bucket re-
distribution, we compare Mir without signature verification
sharding to running parallel PBFT instances, sharing only
a common checkpoint mechanism and watermark window
(“Parallel PBFT”). For a fair comparison, the parallel PBFT
instances implement the same mechanisms as Mir (signatures
instead of MACs, separate network interface for clients and
parallelized network access — see Section 5.10). Moreover,

for the parallel PBFT instances, we evaluate a workload of
unique client requests to remove the negative impact of du-
plication. We observe an approximate overhead of about 3%
(resp. 9.5%) for adding bucket re-destribution. Importantly,
the parallel PBFT instances protocol is not live, unless the
client can resubmit their request (potentially after a timeout,
as done by BFT-Mencius [52] or RCC [38], substantially in-
creasing latency) to at least f other nodes. We evaluate the
impact of submitting f +1 or more requests in parallel with-
out duplication prevention in the next section (Section 9.4).

The small penalty of robust bucket re-distribution is more
than compensated for by signature sharding which boosts Mir
throughput to 74k req/s (resp. to 33.5k req/s with LTO).

All variants of Mir maintain roughly from 1–2s latency
at relatively low load, to 3–5s latency close to saturation.
PBFT latency is lower at 600–800 ms, yet PBFT saturates
under very low load compared to Mir. We measured latency
by: (1) synchronizing clocks between a client and a node
belonging to the same datacenter with NTP, (2) deducting
request timestamp at a client from commit timestamp at a
node, (3) averaging across all requests (and, consequently, all
datacenters).

9.4 Benefits of Duplication Prevention
In this section we examine the impact of duplicate requests
to goodput, i.e., throughput of unique requests. In Fig. 9 we
compare the performance of Mir (noSVS) to a version of Mir
where the leaders do not partition requests in buckets, but
rather add in batches all their available requests, following
what other parallel leader protocols do. These protocols in-
clude Hashgraph [45], Red Belly [26], BFT-Mencius [52],
OMADA [30] and RCC [38] .

We examine the impact of duplicates in two scenarios, (1)
where clients submit their requests to f + 1 nodes — intu-
itively, this is the minimum number of nodes to which a client
must submit a request in any BFT protocol that ensures live-
ness (due to possible censoring by f nodes), and (2) where
clients submit their requests to all nodes.

The impact is a significant performance penalty of 61%
(resp. 72%) reduction in goodput compared to Mir (noSVS) in
the first (resp. second) scenario on n = 4 nodes. This reaches
as much as 97% (resp. 99%) with n = 100, demonstrating
O(n−1) goodput scalability in protocols with duplication.

9.5 Performance Under Faults
Leader Crash Faults. Figure 10 shows throughput as a func-
tion of time when one and two leaders fail simultaneously.
We run this experiment in a WAN setting with 16 nodes, and
trigger a view change if an expected batch is not delivered
with fixed timeouts of 20 seconds. With one leader failure, a
view change is triggered and the system immediately transi-
tions to a configuration with 15 leaders. When two failures
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occur simultaneously, the first view changes takes the system
to a configuration with 15 leaders. The first few batches are
delivered in this configuration, but, since one of the 15 lead-
ers has failed, a second view change is triggered that takes
the system to a configuration with 14 leaders, from which
execution can continue normally. In this scenario, the figure
also depicts the evolution of the leaderset in case the failed
nodes recover: within three epochs, the system is in a stable
state with 16 leaders again.

We can observe that gracious epoch changes are seamless
in Mir (these occur from second 141 onwards in the experi-
ment with 2 faults), whereas ungracious epoch changes (when
throughput temporarily drops to 0) last approximately one
epoch change timeout.
Request Censoring (Byzantine Leaders Dropping Re-
quests). In this experiment we emulate Byzantine behavior by
having an increasing number (from 0 to f = 5) of Byzantine
leaders dropping (censoring) requests in our 16-node WAN
setup. Fig. 11a shows that mean latency remains below 4.6s
(resp., 2.2s) when Byzantine leaders drop 100% (resp. 25%)
of the requests they receive. Tail latencies (95th percentile)
remain below 16s (resp., 7s). Fig. 11b shows the distribution

and CDF of latency with 5 Byzantine leaders censoring 100%
of requests. When clients send requests to all nodes, we ob-
serve a drop of up to 15% for mean and 18% for tail latencies.
In an experiment with bucket re-distribution period of 128
batches (not depicted) we observe a decrease of up to 44%
for mean and 49% for tail latencies. This introduces, though,
a penalty of approximately 10% in peak throughput.
Stragglers (Byzantine Leaders Delaying Proposals). In
this experiment we evaluate Mir resistance to stragglers.
Stragglers delay the batches they lead and propose empty
batches. In detail, if the epoch change timer expiration dura-
tion is D, a straggler delays the proposal as much as possible
without triggering any batch timeouts. The upper bound on
the straggler delay is thus D.

In Mir, with multiple leaders proposing and committing
batches independently, a single straggler can only impose a to-
tal delay of at most D once per epoch without being detected,
as compared to once per sequence number, in single-leader
protocols. The key to Mir straggler resistance is that each
sequence number sn has its own epoch change timeout which
a correct node starts as soon as it commits sn− 1 (Alg. 4,
Line 116). Moreover, the sequence numbers are assigned
to leaders in a round robin way and therefore a single strag-
gler does not control the proposal of contiguous sequence
numbers. Therefore, batches committed by correct nodes
will trigger timers for the straggler’s batches independently
leading to those timers running mostly in parallel. In our
implementation, the next epoch primary will suspect as faulty
the node who was responsible for the sequence number whose
timer expired, in this case the straggler, and remove this node
from the next leaderset. The straggler is re-added back to the
leaderset only once it becomes epoch primary.

We perform both WAN and LAN experiments with n =
16 nodes, starting from a stable epoch. The load is set at
about 25-30% peak throughput (corresponding to roughly
25k req/s). Epoch change timeout is set to 20s and ephemeral
epoch length to 256 batches. We run our experiment until the
straggler is removed from and re-added to the leaderset. .
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Figure 11: Latency under the request censoring attack.

On WAN, fault-free throughput gives a baseline of 24.8k
req/s. With a single Byzantine straggler leader delaying each
of its batches by 15s, the average throughput is 18k req/s
(penalty of 25% over the baseline). The straggler is always
detected and removed from the leaderset almost immediately.

On LAN, baseline throughput without faults is 28.1k req/s.
For reference, Mir latency in LAN is in milliseconds. We
set straggler delay to 2 seconds (while keeping epoch change
timeout to 20s – a value verybig for LAN) to keep the straggler
longer in the leaderset. This time, the straggler remains in
the leaderset for over 600 sequence numbers, after which it is
removed from the leaderset. In this case, we measure average
throughput of 15.7k req/s in the entire execution (a penalty of
44%).

To put these numbers into perspective, a single-leader Aard-
vark [25] suffers a 90% performance penalty with a straggler
primary on a LAN delaying batches for 10ms. We conclude
that Mir has very good performance in presence of stragglers,
even with simple fixed epoch change timeouts. Future op-
timizations of Mir Byzantine node detection are possible,
following the approaches of Aardvark [25] and RBFT [13].

10 Related Work

The seminal PBFT [24] protocol sparked intensive research
on BFT. PBFT itself has a single-leader network bottleneck
and does not scale well with the number of nodes. Mir gener-
alizes PBFT and removes this bottleneck with a multi-leader
approach, enforcing a robust request duplication prevention.
Request duplication elimination is simple in PBFT and other
single-leader protocols, where this is the task of the leader.

Aardvark [25] was one of the first BFT protocols, along
with [10, 13, 57], to point out the importance of BFT protocol
robustness, i.e., guaranteed liveness and reasonable perfor-
mance in presence of active denial of service and performance
attacks. In practice, Aardvark is a hardened PBFT protocol
that uses clients’ signatures, regular periodic view-changes
(rotating primary), and resource isolation using separate NICs
for separating client-to-node from node-to-node traffic. Mir
implements all of these and is thus robust in the Aardvark
sense. Beyond Aardvark features, Mir is the first protocol to
combine robustness with multiple leaders, preventing request
duplication performance attacks, enabling Mir’s excellent
performance.

The first replication protocol to propose the use of multiple
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parallel leaders was Mencius [50]. Mencius is a crash-tolerant
Paxos-style [46] protocol that leverages multiple leaders to
reduce the latency of replication on WANs, an approach later
followed by other crash-tolerant protocols (e.g., EPaxos [53]).
The approach was extended to the BFT context by BFT-
Mencius [52]. Mencius and BFT-Mencius are geared towards
optimizing latency and shard clients’ requests by mapping a
client to a closest node. If the clients’ request is not delivered
within a timeout period, the client retrasnmits its request to
another node. However, this technique has several reciproca-
tions which BFT-Mencius does not handle.

• The client cannot distinguish a faulty leader from a slow
leader, therefore it is infeasible for the client to choose a
timeout that prevents from introducing duplicate requests
to the system.

• If the client has a conservative timeout, the client might
suffer very long latency, especially in the case of cascad-
ing faults (or Byzantine nodes who accept the request
pretending to be correct).

• Worse, if a client is malicious, the client can re-transmit
its request to other nodes exposing a vulnerability to
request duplication attacks.

As illustrated in our evaluation (Sec. 9.4), malicious clients
can severely impact the throughput of such a scheme, by send-
ing their requests to multiple or all nodes. Unlike in a regular
DoS attack, these clients cannot be naively declared Byzan-
tine or rate-limited, as such request traffic may be needed
by correct clients to deal with Byzantine leaders dropping
requests (request censoring attack) or to optimize the latency
of a BFT protocol. Unlike BFT-Mencius, Mir maps clients’
requests to buckets which are then assigned to nodes, sim-
ilarly to consistent hashing [39]. Mir further redistributes
bucket assignment in time to enforce robustness to request
censoring. Unlike Mencius, EPaxos and BFT-Mencius, Mir
does not optimize for latency in the best case, paying a small
price as it does not assign clients to the closest nodes.

Recent BFT protocols proposed in the blockchain context
(Hashgraph [45], RedBelly [26], and OMADA [30]) that
exhibit a multi-leader flavor, also do not address request dupli-
cation. In particular RedBelly and OMADA address request
duplication similarly to BFT-Mencius, suffering the same
disadvantages. Notably, RedBelly introduces a similar mech-
anism to SVS for improving performance.

Hashgraph suggests charging fees for duplicate requests.
This can, however, unfairly penalizes correct clients whose
requests are delayed or censored. Furthermore, unlike Mir,
Hashgraph invents a new BFT protocol from scratch which
is a highly error-prone and tedious process [12]. In contrast,
Mir follows an evolutionary rather then revolutionary design
approach to a multi-leader protocol, building upon proven
PBFT/Aardvark algorithmic and system constructs, consider-
ably simplifying the reasoning about Mir correctness.

Parallel to this work, RCC [38] introduced a wait-free
paradigm for multiplexing single-leader protocol instances.
While the wait-free design reduces the impact of failure re-
covery on throughput, RCC throughput may degrade with
malicious clients or network asynchrony. In particular, RCC
uses consensus among replicas to allow the client to pick an
arbitrary single instance per round of agreement. Besides al-
lowing faulty clients to overload a single replica, there are ex-
ecutions where even a correct client, under asynchrony, sends
a request to some instance and then asks to switch instances,
causing both the "old" and the "new" instance to propose the
same request (albeit in different rounds), wasting bandwidth.
This can be generalized to more than two instances. RCC sug-
gests a synchronization mechanism to prevent a client from
subscribing to multiple instances. Mir completely prevents
multiple proposals of the same request. Moreover, Mir aims
to mitigate uneven request distribution using a hash function
for leader assignment, along with the client watermark win-
dow mechanism. Finally, in RCC, delayed messages or a
faulty client can cause unnecessary request re-transmissions.
Mir relies on the clients submitting the request to enough
nodes and on the bucket re-assignment mechanism to guar-
antee liveness, preventing such re-transmissions by design.
While it seems there is a latency - throughput trade-off, Mir
evaluation (Fig. 11) shows that, even under heavy censoring,
request delay is limited to the order of seconds, a latency that
seems comparable to a timeout that would be necessary to
preserve liveness with the request re-transmission or instance-
switching mechanism.

Two recent protocols, HotStuff [61] and SBFT [36], are
leader-based protocols that improve on PBFT’s quadratic
common-case message complexity and require a linear (O(n))
number of messages in the common case. HotStuff is opti-
mized for throughput and features O(n) messages in view
change as well (SBFT requires O(n2) messages in view
change). While Mir’s approach of multiplexing PBFT in-
stances and SBFT/HotStuff improvements over PBFT ap-
pear largely orthogonal, our experiments show that Mir
multi-leader approach scales better than HotStuff, which is a
single-leader protocol. Namely, even though PBFT/Mir have
quadratic common-case message complexity, these messages
are load balanced across n nodes, yielding O(n) messages
at a bottleneck replica, just like HotStuff/SBFT. Our experi-
ments also showed that HotStuff retains the downside of other
single-leader protocols, i.e., bottlenecks related to leader send-
ing all proposals, yielding an unfavorable O(n−1) throughput
scalability trend. An unimplemented HotStuff variant, called
ChainedHotStuff [61], suggests having different leaders pig-
gyback their batches on other protocol common-case mes-
sages. As Hotstuff has 4 common case phases, this allows up
to 4 “chained” leaders in ChainedHotStuff regardless of the
total number of nodes, which is less efficient than Mir which
allows up to n parallel leaders. In future, it would be very in-
teresting to combine the two approaches, O(n) common case
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message complexity and parallel leaders, by implementing
Mir variants based on HotStuff/SBFT instead of PBFT.

Tendermint [19] authors, on the other hand, realize that
a leader (proposer) who is responsible for disseminating all
transactions quickly becomes a bottleneck. To address this,
while maintaining a single rotating leader protocol, they of-
fload the transaction dissemination to an underlying gossip
protocol. The leader adds in a block proposal for a certain
height only the Merkle root hash of the transactions. How-
ever, liveness cannot be guaranteed, unless the rest of the
nodes (validators), wait for all transactions from the gossip
protocol before voting for the proposal. Moreover, the block
for the next height cannot be proposed before agreeing on a
block for the current height. This makes Tendermint latency
bound, i.e., it’s performance depends on the network latency.
Thus, the only way to increase throughput is via aggressive
batching which, however, increases end-to-end latency. Even
worse, due to asynchrony, it may take multiple rounds of
proposals per height. Hashgraph [45] is an example of a pro-
tocol that runs multiple gossip instances. However, running
multiple gossip instances is not more efficient in terms of
message complexity, when compared to Mir. In particular,
in Mir request dissemination has a per node O(n) message
complexity, while O(n) gossip instances result in O(n) times
the underlying gossip protocol complexity per node.

Optimistic BFT protocols [12, 44] have been shown to
be very efficient on a small scale in clusters. In particular,
Aliph [12] is a combination of Chain crash-tolerant repli-
cation [56] ported to BFT and backed by PBFT/Aardvark
outside the optimistic case where all nodes are correct. We
demonstrated that Mir holds its ground with Chain in clus-
ters and it considerably outperforms it in WANs. Neverthe-
less, Mir remains compatible with the modular approach to
building optimistic BFT protocols of [12], where Mir can
be used as a robust and high-performance backup protocol.
Zyzzyva [44] is an optimistic leader-based protocol that opti-
mizes for latency. While we chose to implement Mir based
on PBFT, Mir variants based on Zyzzyva’s latency-efficient
communication pattern are conceivable.

Eventually synchronous BFT protocols, to which Mir be-
longs, circumvent the FLP consensus impossibility result [32]
by assuming eventual synchrony. These protocols, Mir in-
cluded, guarantee safety despite asynchrony but rely on even-
tual synchrony to provide liveness. Alternatively, probabilis-
tic BFT protocols such as Honeybadger [51] and BEAT [28]
provide both safety and liveness, except with negligible prob-
ability, in purely asynchronous networks. By comparing Hon-
eybadger and Mir, we showed that this comes as a trade-off,
as Mir significantly outperforms Honeybadger, even though
both protocols target the same deployment setting (up to 100
nodes in a WAN). Notably, the authors realize the impor-
tance of duplicate elimination, targeting “mostly disjoint sets
of transactions” in HoneyBadger’s proposals. They suggest
that each leader randomly samples the received and yet un-

proposed requests. While this approach would result to no
duplicates on expectation with a sufficiently large pending
request buffer, in practice, unless the system is deep in satu-
ration, the request buffer does not contain significantly more
requests than the next batch. Therefore, if the request buffers
of multiple leaders contain duplicate requests, the leaders
will include them in their respective batches. Indeed, in our
Honeybadger evaluation we observed that goodput (effective
throughput) was roughly only 20% of the nominal through-
put. BEAT suggests some optimizations over Honeybadger
without significantly outperforming the former.

As blockchains brought an arms-race to BFT protocol scal-
ability [58], many proposals focus on large, Bitcoin-like scale,
with thousands or tens of thousands of nodes [31, 35]. In par-
ticular, Algorand [35] is a recent BFT protocol that deals with
BFT agreement in populations of thousands of nodes, by re-
lying on a verifiable random function to select a committee
in the order of hundred(s) of nodes. Algorand then runs a
smaller scale agreement protocol inside a committee. We
foresee Mir being a candidate for this “in-committee” pro-
tocol inside systems such as Algorand as well as in other
blockchain systems that effectively restrict voting to a smaller
group of nodes, as is the case in Proof of Stake proposals [20].
In addition, Mir is particularly interesting to permissioned
blockchains, such as Hyperledger Fabric [11].

ByzCoin [42] scales PBFT for permissionless blockchains
by building PBFT atop of CoSi [55], a collective signing
protocol that efficiently aggregates hundreds or thousands
of signatures. Moreover, it adopts ideas from PoW based
Bitcoin-NG [31] to decouple transaction verification from
block mining. This approach is orthogonal to that of Mir and
variants of Byzcoin with Mir instead of PBFT are interesting
for future work.

Stellar [48] uses SCP, a Byzantine agreement protocol
with asymmetric quorums and trust assumptions targeting
payment networks, which targets similar network sizes as Mir.
Asymmetric quorums of SCP modify trust assumptions and
the liveness guarantees of traditional BFT protocols, with [41]
showing liveness violation with failures of only two specific
nodes in a production configuration of Stellar. We show it is
possible to obtain high throughput and low latencies while
maintaining the strong guarantees of BFT protocols with
classical (symmetric) quorums and trust assumptions.

Sharding protocols [43, 49] partition transaction verifica-
tion into independent shards. Mir is complementary to such
protocols as they either require ordering within a shard or
total ordering of the shards. Monoxide [59] also uses shard-
ing to increase throughput, but provides weaker guarantees
(eventual atomicity across shards). Moreover, Monoxide’s
scalability heavily depends on transaction payload semantics.

Finally, our work is already generating considerable trac-
tion, with recent follow-up works attempting to extend our
approach (e.g., [14, 33, 37]), however without yet provably
improving Mir performance.
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11 Conclusions

This paper presented Mir, a high-throughput robust BFT pro-
tocol for decentralized networks. Mir is the first BFT protocol
that uses multiple parallel leaders thwarting both censoring
attacks and request duplication performance attacks. In com-
bination with reducing CPU overhead through the “signature
verification sharding” optimization, this allows Mir to achieve
unprecedented throughput at scale even on a wide area net-
work, outperforming state-of-the-art protocols.

The main insight behind Mir is multiplexing multiple par-
allel instances of the PBFT protocol into a single totally or-
dered log, while preventing duplicate request proposals by
partitioning the request hash space and assigning each subset
to a different leader. Mir prevents request censoring attacks
by periodically changing this assignment to guarantee that
each request is eventually assigned to a correct leader. Be-
ing based on the well understood and thoroughly scrutinized
PBFT makes it is easy to reason about Mir’s correctness.
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