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Abstract
Blockchain networks have attracted tremendous attention for creating
cryptocurrencies and decentralized economies built on peer-to-peer protocols.
However, the complex nature of the dynamics and feedback mechanisms within these
economic networks has rendered it difficult to reason about the growth and evolution
of these networks. Hence, proper mathematical frameworks to model and analyze the
behavior of blockchain-enabled networks are essential. To address this need, we
establish a formal mathematical framework, based on dynamical systems, to model the
core concepts in blockchain-enabled economies. Drawing on concepts from
differential games, control engineering, and stochastic dynamical systems, this paper
proposes a methodology to model, simulate, and engineer networked token
economies. To illustrate our framework, a model of a generalized token economy is
developed, where miners provide a commodity service to a platform in exchange for a
cryptocurrency and users consume a service from the platform. We illustrate the
dynamics of token economies by simulating and testing two different block reward
strategies. We then conclude by outlining future research directions that will integrate
additional methods from signal processing and control theory into the toolkit for
designers of blockchain-enabled economic systems.

Keywords: Economic networks, Differential games, Stochastic processes, Control
systems

Introduction
During the 2007-2008 global financial crisis, serious abuses bymajor financial institutions
initiated a series of events resulting in a collapse of the loosely regulated financial network.
This crash unveiled major weaknesses of traditional financial systems and instigated a
general feeling of distrust on banking institutions. In this context, decentralized economic
systems based on cryptocurrencies, such as Bitcoin (Nakamoto 2008), were developed
and launched by a group of cryptographic activists who believed in social change through
censorship-resistant and privacy-enhancing technologies (Rainer et al. 2015). Prior to Bit-
coin, several attempts to establish digital currencies were made, including b-money by Dai
(1998), hashcash by Finney (2002), and bit gold by Szabo (2005). Instead of relying on large
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financial institutions for their operation, these cryptocurrencies proposed a decentralized
economy in which a collection of economic agents coordinate through a peer-to-peer
network of computers via a blockchain protocol.
At a high level, blockchain aims to keep track of a ledger of valid transactions between

agents of the economy without the need of a central institution for coordination. In
order to keep track of a faithful and accurate list of transactions, the ledger is broad-
cast and replicated across all the machines in a peer-to-peer network. To enforce that
the transactions in the ledger are valid (i.e., there is no negative balance or double
spending), the network ‘as a whole’ coordinates to accept or reject new transactions
according to a set of rules aiming to detect and block the operation of malicious agents
(e.g. Byzantine attacks where malicious nodes can send arbitrary messages to differ-
ent nodes in the network (Lamport et al. 1982)). Blockchain implements this idea by
bunching together a group of new transactions that are added into a chain of blocks
only if these transactions are validated by the peer-to-peer network. Consensus proto-
cols are particularly important in this validation step, since they are commonly used
to reconcile conflicting versions of the ledger. A particular protocol used to enforce
consensus is Proof of Work (PoW) (Bentov et al. 2014), currently used in Bitcoin and
Ethereum. PoW is just one particular example of many other consensus protocols, such
as the Practical Byzantine Fault Tolerant algorithm (PBFT) (Castro et al. 1999), Proof of
Stake (PoS) (Buterin and Griffith 2017), Delegated Proof of Stake (DPoS) (Larimer 2014),
or Proof of Useful Work (Ball et al. 2017) to mention a few. Such a hierarchical rep-
resentation of blockchain state has also been articulated in Shorish (2018). Canonical
results in decentralized coordination using state space representations are presented in
Olfati-Saber et al. (2007).

A token economy

Regardless of the underlying network architecture and consensus mechanism, the
resulting economic networks remain largely similar, with economic agents driven
by incentives under a set of rules. It has become increasingly important to design
the right set of microscopic rules and incentives that can achieve the desirable
system-level behavior (Voshmgir 2019). The term cryptoeconomics has been used to
describe the design and study of incentives and mechanisms in a blockchain network
(Voshmgir and Zargham 2019).
Although mechanism design and algorithmic game theory have been used to approach

this design problem, agents in a real-world economy are not fully rational and are fre-
quently exposed to disturbances (Nisan et al. 2007). In this paper, we draw inspiration
from early military pursuer-and-evader differential games, where the models used are
agnostic to the exact behavior of the players, to develop a theoretical and computational
framework to validate the behavior of a networked economy from permissible actions and
trajectories of the system (Isaacs 1999). Compared to other games and distributed control
problems (Marden 2012; Marden and Shamma 2015; Ragavendran et al. 2011), the design
problem in blockchain protocols has its own set of challenges, as agents have access to
global information that can be used to collude or form Sybil attacks which are a class of
malicious strategies leveraging synthetic accounts (Göbel et al. 2015; Heilman et al. 2015;
Douceur 2002).
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Differential games and control

Differential games bridge many concepts in control theory with game theory. Control
theory is foundational to design systems that are robust to environmental noise and
system-failures (Dockner et al. 2000). To fully harness the power of control theory, we
first need to define the system-level objectives for the blockchain network which are often
neglected in the business narratives. In addition, traditional control theory often deals
with a physical system over which designers have direct control (Zargham et al. 2018). In
designing an economic network of human agents and incentives, designers at best have
indirect control over the incentive structure with little control over the exact behavior.
In this paper, we propose a stochastic dynamical systemmodeling approach for decision

making and economics inspired by Peters and Adamou’s work on ergodicity economics
(Peters and Adamou 2018), Sterman’s work on business dynamics (Sterman 2002), Foster
andMetcalfe’s work on complexity in economics (Foster 2005; Foster andMetcalfe 2012),
Roth’s and Lux’s work on computational methods (Roth 2002; Lux 2008). A stochastic
dynamical systemmodel enables us to understand complex relationships within a system,
as well as observe the business level impact resulting from secondary or tertiary dynam-
ics which are often counterintuitive but obvious after the fact (Forrester 1971). Another
major difference of ourmodel from a classical control systemmodel is that each individual
follows their own control policies, not necessarily the ones that protocol designers hope
for. This is where concepts from differential games come in. Agents follow their own poli-
cies as a function of their own beliefs of the system state and their own payout function.
The collective behaviors of different agents result in sometimes unexpected system-level
outcomes. The role of the designer is to design a set of rules and incentives such that the
system-level goal can still be achieved irrespective of the exact behavior of the agents. In
our model, we will model agent’s decisions using random variables but the exact distri-
bution varies widely by applications. For example, when dealing with arrival, a Poisson
distribution is often used (Borowski and Marden 2015; Guzman and Mojica-Nava 2017).
Details around how to select and parameterize a distribution are beyond the scope of this
paper.
In Fig. 1, we present our model for agents’ beliefs and policies. Random processes

are fed into the agent policies, which collectively update the unobservable full system
state. Agents in the system can then observe the state and form their beliefs, signals,
and objectives that impact their policies in the next iteration. Despite the presence of
these unobservable states and random processes, allowable agent policies and system
mechanisms should still achieve certain observable outcomes.

Overview

This paper proposes a new mathematical framework, based on tools from dynamical
systems theory and control engineering, to model and analyze the function of blockchain-
enabled systems. In particular, we borrow a modeling framework widely used in control
engineering called state space representation (Sontag 2013). According to this framework,
there is a set of abstract variables, called states, evolving over time (either continuous
or discrete) according to a set of rules. In the discrete-time case, the evolution rules are
described in terms of a first-order difference equation, in which the values of the states
at a given time t ∈ N depend exclusively on the values of the states at time t − 1. Hence,
given the initial values for the states at the origin of time (i.e., t = 0), it is possible to
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Fig. 1 Expanded representation of the differential game accounting for a variety of factors beyond the states
and actions, including private signals σ , private goals V(·), a partially observable state X with an observable
subspace Y ⊆ X, and some additional environmental stochastic processes δ drawn from potentially
unknown distributions

recover the states at any time t > 0 by solving this recursion. There is a rich mathe-
matical theory to analyze state-space models, specially in the linear case, in which the
states at time t depend on the states at time t − 1 according to a linear transformation.
In this paper, we propose a linear state-space model of the blockchain network whose
set of states represent transaction addresses. Notice that, as new transactions take place
in the decentralized economy, the number of states in the model increases over time.
This results in some technical difficulties that we overcome by proposing a linear time-
expanding (LTE) state-space model which we will use to analyze the temporal behavior
of the blockchain. As a reference case, we will model and analyze the evolution of the
state in the public Bitcoin network using the aforementioned LTE modeling framework.
Using tools from state-space theory, Lyapunov-like functions (Zargham et al. 2018; Khalil
and Grizzle 2002; Smith 1984; Park et al. 2019) in particular, we will illustrate how to
enforce a global property, namely, the total amount of currency in the system, using local
state-transition rules.
To further elucidate the power of the state-space modeling framework, a model of a

generalized token economy is proposed where miners provide a commodity service to a
platform in exchange for a cryptocurrency and users consume a service from the plat-
form. Certain key metrics of the economy are defined, such as the growth of the network,
intrinsic value of the token, and volatility of the service performed denominated in fiat
currency. A momentum-based secondary market of the price of the token is also included
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in the system. This baseline model allows us to run Monte Carlo simulations and observe
outcome of complex dynamics and reason about the evolution of the system.
The paper is structured as follows: after providing appropriate background, we describe

the LTE state-space model and analyze the behavior of the Bitcoin network using our
framework. We then present a model of a generalized token economy as an extension to
the theoretical framework with a baseline simulation based on different open-loop block
reward schedules. The paper is concluded by exploring model limitations and outlining
future research directions.

Theoretical framework
The following characterization attempts to create a useful abstraction over the proper-
ties of a blockchain network. It is not an attempt to describe how a blockchain network
works, but to provide tools to engineer economic systems within such a network. All state
variables are real-valued to make derivations more intuitive and straightforward.

Characterizing the economic network

The following definitions are used to characterize the unbounded agent state space and
to relate that to the bounded state space over which system requirements may be defined.
This model does not require that the system be implemented with a centralized state but
mathematics characterizes the macro scale evolution of the system in terms of formally
defined micro elements. This framework is critical for understanding the relationships
between agents and accounts within a decentralized system.
Furthermore, timescale of the state space model is defined so that agent actions can

be properly modeled. A discretization of the sequence and aggregation of actions into
transaction blocks is necessary to simulate the system at this level. However, the construct
provided is sufficiently general that if the discrete time is mapped to atomic events, the
differential equations models may be used for event based simulation without deriving
new models.
This model is defined over addresses. All addresses are defined by public key private

key pairs, where private keys are used for cryptographic proof of the right to act as agent.
Without loss of generality more complex schemes such as multi-signature schemes can
be substituted for the simple private key proofs assumed here. Further characterization
of cryptographic schemes is not required as this section focuses on the system dynamics
rather than the means of enforcing those dynamics.

Definition 1 Let A be the set of all possible Addresses as determined by the range of
the cryptographic hash function used in the system implementation. At any time the set of
addresses that exist is A ⊂ A.

An address a ∈ A is referred to as an agent when the address is assumed to map to an
identity and thus can perform an action. An address a ∈ A is called an account when it
contains code declaring one ormore states and associatedmechanisms which are exposed
to other agents. Agency is the ability of agents to take actions through proof of control
over accounts. In other words, an agent controlling account a ∈ A has access to a set
of actions (U ⊂ U as defined in Definition 4) and mechanisms (F ⊂ F as defined in
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Definition 5). The following definitions are concerned with the mutation of system state
by agents’ actions as defined through Definitions 2 to 9.

Definition 2 The Ledger State is a shared data structure L ∈ L which evolves when
agents perform transactions by taking actions with respect to mechanisms; L denotes the
space of all valid ledger states L. The state L = {X,T} where X is a set of local states over
all accounts as defined in Definition 3 and T is a (partially) ordered list of transactions as
defined in Definition 6.

The list of transactions T need not be strictly ordered because transactions are local
operations on the state with respect to accounts. It suffices to know the order of any
transactions with dependence on or modification of a shared element of the state x ∈ X.
Further formalization of event orderings is deferred from discussion in this document.

Definition 3 Consider the Global State X as an aggregate set of Local States, Xi, over
each address i ∈ A. To further distinguish between account state and controlling agent for
each address, Local States can also be defined in terms of the state declared by account
i ∈ A but controlled by agent j ∈ A as Xij.

It is immediate that each local state Xij must be declared by a unique account i ∈ A.
Therefore, the local states can be interpreted as a partition of X over accounts. It is not,
however, assumed that there is a partition over agents dimension since an agent can
control multiple accounts which only maintain the states.

Definition 4 For any agent a ∈ A there is a state dependent Action Space representing
all legal actions of agent a given a global state X under some mechanisms f as defined in
Definition 5. A particular action is denoted as u ∈ U where U is the set of actions that
exist at that point in time and U ⊂ U , a set of all possible legal actions.

Definition 5 Consider the set ofMechanisms to beF such that any f ∈ F is an operator

f : X × U −→ X (1)

where X is the space of all possible states X as defined in Definition 3 and U is a space of
all legal actions as defined in Definition 4.

Mechanisms like states, must be declared by an account and in many cases will have
been declared alongside specific local state variables Xi which the mechanism operates
on. However, no such assumption will be made formally.

Definition 6 The set of all possible transactions is denoted as T = A × F × U where
an element t ∈ T is defined t = (a, f ,u). In order for the transaction to be valid, agent a
must have the right to perform the state update operation X+ = f (X,u) given the current
state X.

As previously defined in the Ledger State, a sequence of transactions organized into a
(partially) ordered list is denoted as T. The partial ordering may be considered without
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loss of generality by noting that such a partial ordering is defined precisely by the inde-
pendence of the final output to the ordering of the list. This occurs when there is strong
separation in the states, accounts, and mechanisms involved in the transactions in T.

Definition 7 A policy P : X −→ U is a state dependent strategy over a particular
mechanism f ∈ F . An agent a ∈ A is said to be using policy P over mechanism f ∈ F
if it monitors the state X and broadcasts transaction t = (a, f ,u) associated with action
u = P(x) ∈ U .

This definition allows for the case that no transactions are made because the conditions
for a transaction under policy P are never met but it excludes the degenerate cases where
there is no state for which a transaction will be generated. A practical consideration of this
framing is the agents engagement level in monitoring the state. For the purpose of simple
notation the sampling rate of the monitoring process is absorbed into the definition of P.
During simulation. it is made explicit for tuning purposes.

Definition 8 Consider ledger State Transitions; the Ledger State may be updated for
any valid sequence of transactions T =[ . . . , t, . . . ], where t = (a, f ,u) is valid given X
when the operation is applied. Without loss of generality, it is assumed all transactions are
valid because invalid transactions are rejected.

An atomic update is defined

X+ = ft(X,ut) for any valid (at , ft ,ut) given X (2)

where ft is the mechanism used in transaction t and ut is the action taken for transaction
t. For a block defined by sequence of transactions T, the state update is

X+ = fN (fN−1(· · · f1(f0(X,u0),u1) · · · ,uN−1),uN ) (3)

where the list of transactions T is indexed by {0, 1, . . . ,N}.

Definition 9 The Ledger Trajectory is a sequence of ledger states L(k) = {X(k),T(k)},
indexed by k = 0, 1, . . . ,K such that

X(k + 1) = fN (fN−1(· · · f1(f0(X(k),u0),u1) · · · ,uN−1),uN ) (4)

for transactions T(k) is indexed by k = 0, 1, . . . ,N.

Notation may be simplified by defining Fk to be the composition of the transactions in
T(k) such that

X(k + 1) = Fk(X(k)) (5)

denoting the closed loop state update accounting implicitly for the actions u = P(X).
At any time the most recent Ledger State may be denoted as L(K) = {X(K),T(K)

where the integer K is the block height and L(0) = {X(0),T(0)} is the genesis block. The
number of transactions is dependent on the block N = N(t). Under this definition the
Blockchain is characterized precisely by the trajectory of generalized dynamical system
in conical form. As defined, the differential equations can be used to characterize the
system with atomic transactions as the basic unit of time. Organizing transactions into
blocks provides a means of testing block based logic.
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Any mechanism that can be implemented as an account under this framework pro-
vides an explicit contribution to the actions available to all other accounts within the
system. The explicit characterization of an account and its subsequent state changes per-
mits the estimation of changes in any utilities defined over the network state. Using the
second order discrete networked systemmodel, it is possible to both formally analyze the
reachable state space and simulate the response to incentives with respect to a variety of
behavioral assumptions.

Characterizing the peer-to-peer network

Under this formal model there are two distinct concepts matching the term Network.
The state space model defines the evolution of a network of interacting accounts.
From this point of view, the economic network is a robotic network with agents
represented by accounts, each of which has its own unique state space and action
space defined in part by all of the other agents (accounts) in the network. The agent
(account) states of all network participants and their backward discrete difference
equations are visible to other agents and any external observers capable of querying the
Ledger State.
Consideration of the external viewer brings attention to the other concept of a network

which is required to model this system; the communication and computation network
responsible for maintaining account states, computing state updates, verifying the validity
of blocks of transactions, and to agree on the correct sequence of blocks when multiple
valid sequences are available.

Definition 10 A Node is a member of the Peer-to-Peer Network with the ability to
broadcast a transaction tx for which it can prove control of the initiating account a0 using
the associated private key, and the ability to verify the validity of transactions broadcast
by other nodes.

Definition 11 The Peer-to-Peer Network is the set of nodes j ∈ V , participating
in the communication and computation network, each maintaining a copy of the
Ledger State Bj(k) and edges in this network represent communication between nodes.
The Ledger State here refers to the Ledger State at the underlying peer-to-peer net-
work layer. Nodes in the network reach a consensus over their individual Ledger
States Bj(k) to form a Ledger State on the economic layer, L ∈ L, as defined in
Definition 2.

Note that each node jmay have its belief of the Ledger State Bj(k) such that for any two
nodes Bj(k) �= Bj′(k) for j �= j′. However, It is guaranteed by the underlying cryptographic
protocol that both Bj(k),Bj′(k) ∈ B, where B is the set of all possible Ledger States.

Definition 12 A Chain is a valid sequence of Ledger States, C(K) = {B(k) ∈ B for
k = 0, 1, . . . ,K} ∈ BK+1 where B(0) is the genesis block, K is the block height, and C ⊂ C,
where C denotes all possible and valid Chain trajectories.

The cryptographic protocol maintaining the ledger uses sequences of hashing func-
tions to maintain a strict ordering on blocks such that any attempt to manipulate the
history of the ledger state is immediately detectable by all nodes in the communication
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and computation network. Since the cryptographic protocol only accepts blocks for
which all state transitions are defined by legal transactions, the chain is also guar-
anteed to contain a self consistent historical trajectory of the state space model,
both states and derivatives, starting with the initial condition x(0) as defined in the
genesis block.
We now return to the issue of nodes maintaining valid but different chains Cj(Kj) �=

Cj′(Kj′), which implies that Ledger States Bj(Kj),Bj′(Kj′) ∈ B but Kj and Kj′ may be differ-
ent block heights. When nodes i and j have different chains Cj(Kj) �= Cj′(Kj′) there must
be a protocol by which they agree which one is correct or else the state could fragment
into as many trajectories as there are nodes. The set of rules by which these inconsis-
tencies are made consistent is called the consensus protocol. Here the focus is on the
critical properties of the consensus protocol rather than algorithms through which those
properties are realized.

Definition 13 The Consensus Protocol, C is the process by which agents resolve incon-
sistency: C : (C, C) → C returning which of the two otherwise valid chains superseding the
other.

The existence of such a function alone does not ensure that the network does not
fragment into partitions maintaining conflicting states. To further ensure consensus, the
consensus protocol requires the following property.

Conjecture 1 The Consensus protocol must impose a strict ordering on valid chains
C ∈ C. It is sufficient that there exists a function � : C → R such that for any C,C′ ∈ C

C �= C′ =⇒ �(C) �= �(C′). (6)

Two nodes may resolve their inconsistency by each setting their Chain to C∗ =
argmaxC∈{C,C′} �(C).

The formalism is consistent with the Nakomoto consensus paradigm (Nakamoto 2008)
where the function � is the amount of work done to reach the current state in the com-
peting chains. While it is possible for two chains to have exactly the same amount of work
and still differ, such a discrete event is a measure zero outcome in a continuous proba-
bility distribution; thus, for the Bitcoin network using total work, (6) can be expected to
hold with probability one.
For the purpose of the economic specification and subsequent design and analysis, it

suffices to use any consensus protocol for which Conjecture 1 holds with probability one.
Using a proof scheme as the one described above results in a lack of finality, meaning
that there is always the possibility that another chain will supersede the one that a node is
maintaining. A consensus algorithm with finality is one that agreement on B(k) for block
heightK would not be reversible by some later observation. The state update would hence
be Markovian, meaning that the nodes would not be required to compare full trajectories
C(K) to come to consensus over B(K). Proof of Stake based consensus methods under
development aim to achieve this property (Buterin and Griffith 2017).
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Bitcoin reference case
The public nature of data in the Bitcoin economic network has made it a great candidate
for research on financial flows. Many of these models consider graphs of flows between
accounts (Bovet et al.) or evolutionary market share of Bitcoin in the overall cryptocur-
rency market (ElBahrawy et al. 2017). This analysis will instead focus structurally on how
very simple rules about what constitutes a valid transaction result in well-defined global
properties.

Linear time-expandingmodel

The Bitcoin economic network is defined over block heights k = 0, 1, 2, . . ., and there are
nk = |Ak| accounts at each block height k with the additional caveat that nk+1 ≥ nk . For
consistency of notation with dynamical models on networks, accounts will be referenced
with indices i ∈ {1, . . . , nk}.

Definition 14 A Linear Time-Expanding (LTE) system has a state space model in the
form of a discrete time varying linear model with the dimension of the state space x ∈ R

nk

which is monotonically non-decreasing while the state update matrices vary only in nk.

Consider a canonical form discrete time linear time varying model:

x(k + 1) = Akx(k) + Bku(k) (7)

where x(k) ∈ R
nk . Under this framework Ak ∈ R

nk+1×nk , but since there are no internal
dynamics

Ak =
[
Ink
0

]
(8)

where Ink is the identity matrix. The matrix Bk is an all-to-all incidence matrix encoding
all possible sends Bk ∈ {0, 1,−1}nk+1×mk where mk = nk+1 · (nk − 1) = |Ek| and u(k) ∈
R
mk . The edge set is given by Ek = Ak×Ak+1 because flowsmust originate from accounts

that exist at time k. Hence,

[Bk]ie =

⎧⎪⎨
⎪⎩
1 if e = (j, i) for any j
−1 if e = (i, j) for any j
0 otherwise

(9)

Result 1 The system in (7) is an Linear Time-Expanding (LTE) system because, for all
k, Ak is an augmented identity matrix as defined in (8) and Bk is an all-to-all incidence
matrix as defined in (9).

The incidencematrix construction enforces the requirement of no double spend. Under
this construction the local action ue(k) ∈ Ue(k)

Ue(k) =
⎧⎨
⎩ue=(i,j) ∈ R

∣∣ ∑
j
u(i,j) ≤ xi(k)∀i

⎫⎬
⎭ , (10)

where (10) enforces the requirement that accounts cannot spend funds that they do not
have. Note that the requirement is locally enforceable, imposing only constraints on the
balance of account i and transactions to or from account i during block k. Viewed from the
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perspective of account i, the local constraints on flow (no double spend and no negative
balance) can be written as,

xi(k) +
∑
j
u(j,i)(k) − u(j,i)(k) ≥ 0. (11)

In practice, transactions encoded by the inputs u are processed with a strict ordering that
can be enforced with only the sender’s state, as defined in Definition 9,

u(i,j) ≤ xi. (12)

Themodel in (11) is a relaxation of the enforced requirement in (12); any block comprised
of actions u(k) that respect the individual transaction validity requirement (12) will satisfy
the conservation law in (11). The relaxed equation is presented to demonstrate that the
case of the Bitcoin network flow is in fact stronger than the conical network flow models
in the controls literature (Zargham et al. 2013).

Globally invariant properties from local rules

Even though the Bitcoin economic network is a somewhat trivial system to study from
a dynamical systems’ perspective, it is actually much like a biological evolutionary sys-
tem with complex global behaviors emerging from simple local rules. The trajectory of
the system is defined entirely in terms of its state transitions and initial conditions. The
dynamical system model remains structurally invariant even as the number of account
grows unbounded. Each account, or local agent, has full control over its actions and the
set of legal actions for each agent are defined and verifiable with information local to its
agent state. These definitions of local legal actions provide properties that are suitable
for a financial ledger of record. In order to introduce funds into the economy, a driving
function M(k) = μkv(k) is added to (7) where M(k) ∈ R

nk+1 is the product of a sched-
uled positive scalar reward μk ∈ R+ and a stochastic vector v(k) ∈ R

nk+1+ such that∑
i vi(k) = 1 and obtain:

x(k + 1) = Akx(k) + Bku(k) + μkv(k). (13)

Block reward schedule as a driving function, together with a set of local legal actions,
guarantees that a low dimensional global property is enforced throughout the entire
trajectory.

Theorem 1 Given the local ’no double spend’ rule as defined by (11) and the driving
function defined in (13), the global quantity of Bitcoin over time, denoted as y(t), can be
proven to converge to the desired quantity:

y∞ = lim
k→∞

y(k) =
∞∑
k=1

μk . (14)

The details of the proof can be found in the Appendix.

In the Bitcoin network the mining rewards are defined over i = (1, . . . , 32) halv-
ing intervals ri = (k0, k1, . . . , k209999) each including 210000 blocks resulting in μk =
� 50·108

2i
�

108 where k ∈ ri. After the 32nd interval the minted block rewards cease and the total
quantity of Bitcoin is conserved. By computing the sum over the intervals, the final sum
of Bitcoin y∞ = 20, 999, 999.9769, generally quoted as 21 million Bitcoin. This does not
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account for the potential loss of control of accounts with Bitcoin balances which reduces
the effective supply.
The most powerful part about this characterization is that the system literally tracks a

desired property y(k) = ∑
k μk for the entire trajectory, in fact in any valid trajectory,

with no assumptions about actions of individual agents. This indicates that it is proper
to think of blockchain-enabled economic systems as engineered economies where it is
possible to encode legal state transitions in such a manner as to mathematically ensure
the emergence of a low dimensional global property.

A generalized token economy
Cryptocurrencies in their tokenized form have the potential to be more than just cur-
rencies. A token can be a claim over some right, access, utility, or return. Depending on
the design, tokens can align agent incentives and shape agent behavior through rewards,
punishment, and future expectation. Ever since the advent of Bitcoin, there have been
numerous tokens telling stories of various token economies (Buterin 2014; Maker 2017).
Here we propose a generalized token economymodel rooted in our theoretical framework
above and can be easily extended to any specific token economies.

Model setup

Traditional networked economies have been characterized by a centralized platform
where users and producers can exchange goods and services. The value of such a plat-
form is often considered to be proportional to the square of the number of active users by
Metcalfe’s Law (Zhang et al. 2015). Similarly, new token economies are introducing new
models where miners perform a service that is useful to users on the platform and get
paid in a native token. Incentivized peer-to-peer file storage network and video stream-
ing network are just two promising examples (Filecoin 2014; Petkanic and Tang 2017).
In contrast to wasteful energy usage in Bitcoin, the work done by producers in these
new token economies can actually be useful. Such new token economies also differ from
traditional platform economies by coupling platform producers with service providers,
commonly referred to as miners. The role of protocol designers is to design rules, poli-
cies, and state update mechanisms within the system while not actively participating in
the economy. The model proposed aims to help protocol designers better understand
their systems and make good design decisions. The following assumptions are important
in simplifying the model and providing a baseline:

Assumption 1. The model considers each miner and user to be identical, with unit
service capacity (similar to work in mean field games (Lasry and Lions 2007; Sahneh et
al. 2013)). Each user demands one unit of service and each miner only provides one.

Assumption 2. The model assumes a perfectly competitive market where miners and
users are both price takers and the service provided is a commodity with no product
differentiation, given the open nature of a token economy (Gregory 2014; Hayek 1948).

With these assumptions in mind, a state space representation of the system can be
defined with a minimal set of internal states that can capture different aspects of the sys-
tem. We will also define TOK as the native cryptocurrency to the network. There are two
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subsystems within our token economy. The first is with regard to the flow of TOK and the
second is related to the service provided on the network. The two subsystems are con-
nected with three important signals, miner’s profitability, price of service on the platform,
and the price of the token itself which are all treated as part of the Global State, X .
Given our efficient market assumption, we have decided to leave out the mod-

eling of TOK holdings entirely. For one, it is a subsystem in and of itself with
its own dynamics about price movement relative to the amount of TOK in liquid
pool and trading activities. In addition, with the efficient market assumption, we can
assume that all the trading volume and liquidity has been embedded in the price
(Malkiel 1989).
Assumption 1 reduces individual action spaces to population distribution which is a

common approach in evolutionary dynamics (Mabrok and Shamma 2016). Instead of con-
sidering actions of each agent, our model considers aggregated forces that agent actions
collectively exert on the system and treats that as part of the system states.

State variables

Given the above scope and assumptions, system state variables can be defined in Table 1.
It is also worth noting that the price of the native token at time t, K(t), is not just
dependent on the internal states of the system as the token is openly traded on sec-
ondary markets from day one. K(t) will have significant impact on agent incentives
within the network as it bridges the token economy with fiat economy. K(t) is also
subject to influences from unobservable secondary market dynamics, speculation, and
sentiments that may or may not correlate with actual activities on the network itself
(Chu et al. 2015).
Each of the state variable defined in Table 1 constitutes the Global State X defined

in Definition 3. State update operations as defined in Definition 6 can be represented
discretely asX(t+1) = f (X(t)), where agent action u is collapsed intoX(t) given Assump-
tion 1 above. As a general framework, our model is concerned with the consequences

Table 1 Definitions of system state variables

State Variable Definition

S(t) supply of unit service at time t

D(t) demand of unit service at time t

Q(t) quantity of unit service transacted at time t

P(t) price of a unit service at time t

R(t) miner profitability at time t

K(t) price of a native token at time t

B(t) block rewards released at time t

C(t) cost of unit service at time t

�S(t) arrival of new unit service supply at time t

�D(t) arrival of new unit service demand at time t

Xs(t) departure of unit service supply at time t

Xd(t) departure of unit service demand at time t

V(t) native token earned per unit fiat invested in the system at time t
1

V(t) intrinsic value of native token at time t

U(t) speculative value of native token at time t

W(t) amount of native token left in block rewards pool at time t

I(t) abstract index on network’s progress to achieve its goal at time t
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and dynamics of agent decisions, not the decisions themselves. The following system
dynamics are different mechanisms that state trajectories can evolve.

System dynamics

Given some initial states, the following steps are taken at every time step t. A new network
state, X+ or X(t + 1), will be returned and become an input to the same iterative steps in
the next time step.

• New unit service supply and demand are determined based on private signals from
the previous state.

• Service transactions happen based on unit service supply and demand in the current
time step.

• Block rewards are minted and miners make profits from the system.
• Some speculation happens to the native token resulting in a new token price.
• Other system level signals and beliefs are updated.

System Dynamics 1 S(t) and D(t) is first modeled as an arrival-departure stochastic
dynamical system, a classic approach in stochastic models (Muntz 1972).

R(t − 1) and P(t − 1) are the two driving signals for two main feedback loops in the
system. R(t − 1) represents how much the network is paying for the service that min-
ers provide. Similarly, P(t − 1) represents how much the network is willing to accept in
exchange for the service capacity it provides. Hence, we are modeling the arrivals of new
service supplied and new service demanded as two Poisson processes, as follows:

�S(t) ∼ Po(λs(t)) (15)

�D(t) ∼ Po(λd(t)), (16)

where Po(λ) denotes a Poisson distribution of mean λ. State variables λs(t) and λd(t)
capture aggregated agent actions in bringing new supply and demand onto the network.
On a population level, when providing the service is more profitable, more service sup-

ply will arrive. Similarly, when the price of the service gets lower, more demand will arrive
as rational agents respond to price signals. One can enrich this model by introducing
a reservation price and the probability of an agent consuming a service (Bimpikis et al.
2019). However, the current model is simple and robust without going into specific agent
behavior. The mean of �S(t) equals to the mean of �S(t − 1) multiplied by a percentage
increase in miner profitability:

λs(t) = λs(t − 1) × R(t)
R(t − 1)

. (17)

Similarly, the mean of �D(t) equals to the mean of �D(t − 1) multiplied by a percentage
decrease in the price of service as described by:

λd(t) = λd(t − 1) × P(t − 1)
P(t)

. (18)

Treating departure from the system as constants simplifies the dynamics without losing
much of its meaning. In the case where supply is increasing quickly, we can consider ser-
vice departure as departing and then immediately arriving again. This can be accounted
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for by a very positive �S(t). The same can be said about departure in demand. As such,
the overall dynamics of service supply and demand can be described by the equations
below:

S(t) = S(t − 1) + �S(t) − Xs(t) (19)

D(t) = D(t − 1) + �D(t) − Xd(t). (20)

System Dynamics 2 P(t) and Q(t) are derived from S(t) and D(t) based on aforemen-
tioned simplifying assumptions.

With the efficient market assumption, price can be set by relative strength between
demand and supply (Gregory 2014),

P(t) = D(t)
S(t)

. (21)

When demand is greater than supply, a higher price is expected and vice versa. This price
model, despite being very simple, accurately captures this relationship. It can be further
expanded to include momentum, user valuation, and other factors that will affect service
price. Quantity of unit service traded on the network at time t is the minimum between
net new demand and supply. After all, no transactions will take place with unmet demand
or supply. This can be made more realistic with a slippage later since not all matching
supply and demand can find each other in the market. Nonetheless, this has been taken
care of by the efficient market assumption where supply always meets demand. As such
we can write the quantity equation as

Q(t) = min(D(t), S(t)). (22)

Both division in 21 and minimum in 22 are instances of mechanisms f ∈ F that can
be replaced with any other mechanisms under reasonable assumptions depending on the
use case. Our model serves as an example of how the state space model can be generally
applied.

System Dynamics 3 Block rewards are minted as defined by the protocol and released
into the system as B(t).

In most blockchain protocols today, TOK issued in block rewards is usually set by a
predetermined open-loop release schedule. However, we can consider a more abstract
and generalized version of block rewards issuance by introducing the concept of a Key
Performance Index (KPI) and tracking the network’s progress towards achieving that with
I(t). Most traditional open loop block rewards scheme with a pre-determined release
schedule is effectively treating the block time as the KPI, which can be written as,

B(t) = f (�I(t)) = f (�t). (23)

As a mechanism, f ∈ F , an open loop block reward scheme is a function of just the pos-
sible system state, X and is irrespective of agent action, u, i.e. f : X −→ X . However, if
we define the release of block reward as a function of the rate of change in achieving the
KPI, we can then create direct incentives based on what the network desires. Subsidy can
be given out as a function of the change in I(t) and the amount of TOK left in the rewards
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pool. This set of subsidies B(0),B(1),B(2), ...,B(t) can be the set of control policies that
protocol designers can control to bootstrap the network to some target with some initial
capital. This KPI can be as simple as the cumulative service transacted on the network
over some period of time and it will bring agent action u back into the mechanism
equation f in determining state changes related to block reward, i.e. f : X × U −→ X .

System Dynamics 4 Agents speculate on secondary market prices of TOK as reflected
in K(t) that influences other agent behaviors.

The secondary market price is a speculative estimator of future 1
V (t) . Market decouples

from current state of 1
V (t) , because speculation is estimating future 1

V (t) in an effort to cre-
ate returns. Hence, it makes sense to model K(t) as a convex combination of its intrinsic
and speculative value, as defined by γ ∈[ 0, 1],

K(t) = γ
1

V (t)
+ (1 − γ )U(t). (24)

Note that while the range of γ is technically a closed interval, the interesting cases are
when γ ∈ (0, 1). State variable U(t) is the result of aggregating all individual agent’s spec-
ulative actions and translating them as a form of pressure exerted on the system. This is in
line with the general asset pricing framework that the price of an asset can be attributed
to its fundamental and speculative value (Dimson and Massoud 1999; Keynes 1964;
Bachelier 2011). Speculative value U(t) captures momentum in price movement with a
naive projection. The tuning parameter γ is treated as a constant but it can also be a
randomized value that can randomize the composition of the mixture model.

System Dynamics 5 Other system wide beliefs and signals such as C(t), V (t), and R(t)
are calculated.

C(t) is the cost of providing a unit service at some point in time in fiat currencies. This
can be the output of another model but given our definition of a unit service, C(t) can be
any arbitrary value in our model. After all, the value of C(t) only matters in relationship to
the definition of the unit and the value of the unit service itself. We will thus model C(t)
as a stochastic process that is noisy but it is neither diverging nor converging, similar to
sampling from a normal distribution with momentum,

C(t) = αC(t − 1) + (1 − α)N(μ, σ). (25)

Another signal V (t) is defined as the revenue earned in TOK per unit spend in fiat
currency for miners. P(t) × Q(t) refers to how much a miner can earn from transaction
fees and B(t) is the block reward subsidy provided by the protocol forQ(t) transactions at
time t, both in TOK denomination. Each unit of Q(t) will cost C(t) in fiat denomination
and hence C(t) × Q(t) is the fiat spend to earn P(t) × Q(t) + B(t) in TOK. V (t) hence
represents how much tokens miners are earning for the service they provide,

V (t) = P(t) × Q(t) + B(t)
C(t) × Q(t)

. (26)

Multiplying V (t) which is in K/FIAT by the price of token at time t, K(t), we get miner
profitability in a unitless denomination. The system also cares about the inverse of V (t),
which is 1

V (t) . This represents the intrinsic value of the token as it measures the value of
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service provided per unit of token in FIAT/K , or the fiat cost involved in the production of
one token (David et al. 2014). Miners’ profit level in fiat currency can hence be written as

R(t) = V (t) × K(t). (27)

Simulation and evaluation
This paper leveraged an open-source computer aided design software, cadCAD
(BlockScience 2019), for complex adaptive dynamics. System states and dynamics are
encoded in every discrete time step of the simulation with certain key performance
metrics defined as part of the system state. As a token-enabled platform economy, the
platform needs to grow in adoption and in underlying value of the token. In other words,
Q(t), V (t), and K(t) should grow over time. The distribution over the total aggregated
growth of Q(t) and volatility in the price of the service provided P(t) × K(t) are also
important for the network to succeed.
The Bitcoin block reward function follows a step decay function with 50% decrease in

supply approximately every four years (Nakamoto 2008). This often introduces arbitrary
shocks and unpredictable dynamics around the period when the supply is reduced. A
similar but slightly different block reward schedule can be introduced where it follows a
smooth exponential decay with a predetermined half-life. For a generalized token econ-
omy, we will now experiment with two different block reward functions. One that follows
the step decay function of Bitcoin and the other follows a smoothed exponential decay.
Since agents know these block reward schedule ahead of time, future expectation of

token supply reduction is taken into account in driving speculative behaviors (Alexandre
et al. 2018). The two systems are different in the block reward function as defined in 23
that can potentially lead to different behaviors in 24, holding all else equal. More specifi-
cally, this experiment involves holding agent policy, P : X −→ U , constant, and changing
an open loop system mechanism, f : X −→ X , to observe their impact on state trajec-
tory. Monte Carlo simulations are then performed 100 times for each configuration over
1040 weeks or 20 years. A summary of the two configurations can be found in Table 2.
As observed in Fig. 2, a pre-announced step function that significantly reduces the sup-

ply injection into the system at discrete time steps introduces arbitrary shocks into the
system. Agents adapt their policies to speculate around thesemoments when the expected
new supply is sharply reduced. Figure 3, on the other hand, shows a much smoother
exponential rise in token prices as time step increases. It is also worth noting that a step
decay function resulted in greater speculative activities as intense speculation happens
around those shocks whereas a smoothed decay does not provide such pivotal points for
speculation. Similar results are observed in 1

V (t) on logarithmic scale because sharp sup-
ply reduction means that for the same amount of resource input, much fewer tokens are
minted. Figures 4 and 5 further confirm that token price trajectories in our simulations
are largely similar to cryptocurrency price movement observed in real life.

Table 2 Open loop block reward release schedule comparison

Decay Function Total Supply Initial Block Reward (weekly) Half Life (weeks)

Step 21,000,000 50,400 208 (4 years)

Exponential 21,000,000 69,865 208 (4 years)
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Fig. 2 Token prices over 1,040 weeks; statistics from 100 Monte Carlo Runs under step decay block reward
schedule on log scale

Moreover, increased speculative activities as a result of regular and consistent token
supply contraction shocks might lead to increase in service transaction on the network.
Token price speculation around step changes in supply results in increased miner prof-
itability in fiat denomination which attracts more miners to join the network. This will
further lower the cost of unit service on the platform which will in turn attract more users
and hence more service demand. More service demand leads to more revenue for miners
and further reduces the cost of service provided. The presence of this positive feedback
loop within the system has resulted in a rightward shift in the distribution of aggregated
growth in Q when the block reward schedule is a step decay, as evident in Figs. 6 and 7.
The model and simulation presented are no doubt imperfect but they provide a math-

ematical framework and an example simulation derived from tools and theories in

Fig. 3 Token prices over 1,040 weeks; statistics from 100 Monte Carlo Runs under smooth exponential decay
block reward schedule on log scale
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Fig. 4 Token prices over 1,040 weeks; 5 realizations under step decay block reward schedule on log scale

stochastic dynamical systems. These tools and theories are powerful in understanding
and designing complex token networks.

Conclusion and future considerations
This paper builds a bridge between dynamical systems theory and blockchain-enabled
economic systems by proposing a state space representation of the economic system
in terms of linear time-expanding system. This novel representation allows us to use a
plethora of powerful tools developed in the context of control theory for the analysis
and design of blockchain-enabled systems. A baseline simulation based on open-loop
block reward was introduced to illustrate the power of combining our approach with
computational methods. Given our general modeling framework, we can further explore

Fig. 5 Token prices over 1,040 weeks; 5 realizations under smooth exponential decay block reward schedule
on log scale
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Fig. 6 Distribution of aggregated growth in Q over 100 Monte Carlo Runs under step decay block reward
schedule

Lyapunov-like functions, commonly used in control theory (Araujo and Moreira 2014;
Lechevin and Rabbath 2004), to provide greater guarantee on network economic robust-
ness and security (Smith 1984; Park et al. 2019). Systems should be input-output stable
under an energy function, (Klages-Mundt and Minca 2019). Similar methods are used for
robotic systems in Olfati-Saber andMurray (2002). Lastly, it will also be interesting to fur-
ther this research through the lens of an agent (Monnot and Piliouras 2017). Given the
states and dynamics of the system, we hope to understand and compute optimal strategies
for a population of agents to maximize their gains given some constraints. Classic optimal

Fig. 7 Distribution of aggregated growth in Q over 100 Monte Carlo Runs under smooth exponential decay
block reward schedule



Zhang et al. Applied Network Science            (2020) 5:19 Page 21 of 24

control theory with discounted future utility (or some other notion of a terminating con-
dition) will be applicable (Bertsekas 1995). From an economic research perspective, the
approach presented has addressed the Lucas critique in macroeconomics (Lucas 1976) as
it started from agent-level incentives, evolved into dynamics between states, actions, and
mechanisms, and then derived global emergent properties from these underlying struc-
tures and functional relationships. More details on how the presented approach addresses
the critique can be found in Zargham et al. (2020).

Appendix
Proofs
Proof of theorem 1

Proof Since the genesis block contained an empty state, these requirements wouldmake
for a trivial trajectory. Hence, a driving function M(k) = μkv(k) was introduced in (13)
and reproduced here:

x(k + 1) = Akx(k) + Bku(k) + μkv(k). (28)

The function M(k) ∈ R
nk+1 is decomposed into a scheduled positive scalar reward μk ∈

R+ and a stochastic vector v(k) ∈ R
nk+1+ such that

∑
i vi(k) = 1. The vector v(k) denotes

the distribution of the mining rewards across all accounts including potential allocation
to new accounts or may be distributed by any arbitrary rules across an arbitrary subset of
accounts, such as a mining pool. Another key property of the Bitcoin is again recovered
from our state space model. Define a scalar subspace of the state

y(k) = 1′x(k) =
∑
i
xi(k). (29)

We want to prove that the following equation holds true

y(K) =
K∑

k=1
μk . (30)

To prove that, we first rearrange (13) to the following,

x(k) − Ak−1x(k − 1) = Bk−1u(k − 1) + μk−1v(k − 1) (31)

and construct the state by summing the history of changes

x(K) =AK−1 · · ·A0x(0)

+
K−1∑
k=1

	K−1
i=k Ai

(
x(k) − Ak−1x(k − 1)

) (32)

becomes

x(K) =AK−1 · · ·A0x(0)

+
K−1∑
k=1

	K−1
i=k Ai

(
Bk−1u(k − 1) + μk−1v(k − 1)

)
.

(33)



Zhang et al. Applied Network Science            (2020) 5:19 Page 22 of 24

When this expression is used to compute

y(k) =1′x(K)

=1′AK−1 · · ·A0x(0)

+
K−1∑
k=1

1′	K−1
i=k Ai

(
Bk−1u(k − 1) + μk−1v(k − 1)

)
.

(34)

Since x(0) = 0, it follows that

y(K) =
∑
k=1

μk (35)

when one recalls that Ak is an augmented identity matrix, that 1′v(k) = 1 observes that
Bk is an incidence matrix: 1′Bu = 0 for all u.
In the case of Bitcoin the mining rewards are on a convergent schedule ensuring the

maximum total supply

y∞ = lim
k→∞

y(k) =
∞∑
k=1

μk (36)

converges to the desired quantity.
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