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ABSTRACT

Many systems rely on traceroutes to monitor or characterize the

Internet. The quality of the systems’ inferences depends on the

completeness and freshness of the traceroutes, but the refreshing

of traceroutes is constrained by limited resources at vantage points.

Previous approaches predict which traceroutes are likely out-of-

date in order to allocate measurements, or monitor BGP feeds for

changes that overlap traceroutes. Both approaches miss many path

changes for reasons including the difficulty in predicting changes

and the coarse granularity of BGP paths.

This paper presents techniques to identify out-of-date trace-

routes without issuing any measurements, even if a change is not

visible at BGP granularity. We base our techniques on two observa-

tions. First, although BGP updates encode routes at AS granularity,

routers issue updates when they change intra-domain routes or

peering points within the same AS path. Second, route changes

correlate across paths, and many publicly available traceroutes

exist. Our techniques maintain an atlas of traceroutes by monitor-

ing BGP updates and publicly available traceroutes for signals to

mark overlapping atlas traceroutes as stale. We focus our analysis

of traceroute path changes at the granularity of border router IPs

which provides an abstraction finer than AS- or PoP-level but is

not affected by the periodicity of intra-domain load balancers. Our

evaluation indicates that 80% of the traceroutes that our techniques

signal as stale have indeed changed, even though the AS hops re-

mained the same. Our techniques combine to identify 79% of all

border IP changes, without issuing a single online measurement.
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1 INTRODUCTION

To monitor routing, predict performance, or make other inferences,

many systems gather an atlas of traceroutes from a distributed

set of vantage points [12, 54, 67]. Some systems monitor between

all pairs of vantage points [5, 14, 16, 30, 72, 76]. Others measure

from all vantage points to a set of targets [18, 44, 44, 45, 50, 76, 83].

Others choose custom targets per vantage point [7, 19, 22, 57]. The

fidelity of these systems’ observations or predictions depends on

the completeness and accuracy of their views of Internet routing,

which they must refresh to account for path changes.

Unfortunately, vantage points have limited probing budgets to

restrict bandwidth utilization and other overheads in the networks

hosting them. For example, CAIDA limits Arkmonitors to 100 probe

packets per second [12], and RIPE Atlas limits the probing rate of

Probes to 6 Kbps [65]. Saturating these limits is also not advisable

as interference between overlapping probes can negatively affect

precision and synchronization of measurements [35].

These constraints mean that Internet-scale systems cannot fre-

quently reissue traceroutes along all paths. To best cope with prob-

ing rate limits, a system must remeasure a path only when it is

likely to have changed. But, how can a system make this determi-

nation? Path changes occur at arbitrary times and their frequency

varies across paths [19], so remeasuring all paths periodically or in

a random order wastes some measurements on unchanged routes,

takes too long to detect some changes, and misses some changes

altogether.

Prior work that attempted to detect route changes in a timely

manner suffers from two significant limitations:

(1) Detection via direct measurements has limited coverage. Dou-
bleTree [42], DTrack [19], and Sibyl [18] attempt to reduce

the measurement cost to infer changes. However, techniques

that require any measurements to test if a path has changed

have two undesirable properties: (1) for a fixed measurement

budget, the ability to keep traceroutes up-to-date is inversely

proportional to the number of paths, and (2) many measure-

ments will be “wasted” on paths that remain unchanged.

(2) Detection via AS paths in BGP updates is coarse-grained. Other
approaches detect route changes by passively monitoring

https://doi.org/10.1145/3419394.3423654
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BGP updates [18, 26, 45]. However, they only detect changes

visible at the AS level; intradomain changes and changes at

peering points go undetected.

To overcome these limitations of prior work, in this paper, we

develop techniques which detect fine-grained route changes with
broad coverage at no measurement cost. First, while BGP encodes

routes at AS granularity, routers still issue updates when changing

routes at finer granularities. We treat updates as signals that a

route may have changed, even when the BGP AS-path remains

unchanged. Second, we crawl publicly available traceroutes from

measurement platforms to identify route changes. We treat changes

as signals that overlapping routes might have changed.

Our techniques combine to detect 79% of the IP-level changes

in border routers across two months of a daily RIPE Atlas trace-

route campaign that generated 8 million traces per day, all without

issuing any online measurements. Achieving high coverage re-

quires recognizing routes that are impacted by a BGP update or

changes observed in public traceroutes, and so our techniques tar-

get cases beyond easy ones that directly observe the path change.

Our techniques are precise: 82% of the traceroutes that they indi-

cate as out-of-date, in terms of border-level IP interconnections,

have actually changed. Achieving high precision requires avoiding

falsely associating an event with an unaffected traceroute, and so

we develop techniques to scope impact.

Our techniques can be easily integrated into other systems that

rely on up-to-date traceroutes. When our techniques flag a trace-

route as likely to have changed, the system using the traceroute

can take a system-specific action, such as reissuing a traceroute,

discarding the route, or treating it as less trustworthy.

2 MOTIVATION

Many systems use corpuses of traceroutes. CDNs measure trace-

routes to destinations around the Internet to aid in performance-

aware traffic engineering [15, 33, 82]. Network tomography and

troubleshooting systems use traceroute corpuses to identify links or

networks responsible for a failure or performance problem [30, 45,

46, 57, 76]. Internet measurement and prediction systems rely on

correlating paths in traceroute corpuses [18, 44, 50]. The inferences

made by these systems degrade if they use out-of-date traceroutes

that no longer reflect active routes.

Large corpuses cannot be refreshed frequently because measure-
ment platforms have limitedmeasurement budget. Achieving high In-
ternet coverage requires topologically distributed vantage points [15,

16, 18]. The usual approach to achieving this goal is to develop

collaborative platforms where networks hosting vantage points

contribute resources to measurements. Given their collaborative

nature and the requirement of not impacting network traffic and

equipment, platforms such as Ark [12], RIPE Atlas [67], and Speed-

Checker [69] operate under strict measurement budget constraints.

The rate at which measurements can be issued on these platforms

is further limited by recent observations that overlapping measure-

ments are best avoided to minimize interference [35].

Existing approaches for updating traceroute corpuses are ineffective
and inefficient. Ark [12] and iPlane [50] measure paths following

a round-robin schedule, too infrequent for some paths and too fre-

quent for others, since the stability of paths varies greatly [19, 81].

Figure 1: Fraction of paths with border-level and AS-level

changes compared to initial traceroute over time.Most paths

are unchanged even after two months.

DTrack observes previous changes to predict when a path is likely

to change again [19] but ignores that changes (or lack thereof)

in one path have implications for which other paths are likely to

change (or remain stable). Donnet proposed a system that triggers

traceroutes to a destination prefix in response to changes in the AS-

path and communities observed in the prefix’s BGP updates [21].

The approach, however, does not infer which traceroutes may be

impacted by an observed AS-path or community change. Moreover,

most ASes with traceroute vantage points do not provide public

BGP feeds, so there may be no public BGP updates that indicate

when the AS-path corresponding to a previously measured trace-

route changes.

Repurposing of public traceroutes requires sacrificing coverage or
freshness. RIPE Atlas and Ark collect and make publicly available a

massive number of traceroutes each day, which make up a particu-

larly large corpus gathered across many individual measurement

campaigns. This corpus is attractive as a source of data for new

use cases. However, each measurement campaign is subject to lim-

ited probing rates and individualized decisions of which paths to

measure, and so the per-path inter-measurement interval varies

and can be extremely long. So, relying on existing public trace-

routes for a new use case necessitates either including very old

traceroutes–some of which are certainly stale due to subsequent

path changes, which can cause incorrect inferences–or only using

recent traceroutes, severely limiting coverage.

Takeaways. In summary, there exist many systems whose ef-

ficacy depends on their ability to maintain up-to-date views of

Internet routing, but they lack good techniques to cope with limita-

tions on probing rates. If the systems had the ability to infer which

paths have changed and which remain stable, they could smartly

allocate probes to refresh only stale portions of the corpus, and they

could use only those public traceroutes that remained unchanged.

To illustrate this idea, we examined traceroutes issued from 897

sources to 497 destinations every 15minutes for twomonths (details

in §5.1.1). Our results in Figure 1 depict the fraction of paths that

differ from their initial traceroute at different path granularities.

Changes over time are not monotonic since a path may change then

revert back to its initial measurement. After 30 days, 16% of paths

have changed if we consider just the subset of routers at inter-AS

borders. (We consider this granularity to eliminate most changes

caused by ECMP load balancing [6]). For context, CAIDA’s Ark

IPv4 Routed /24 Topology Dataset uses a probing rate that would

allow a vantage point to cycle through one traceroute to each /24
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in 34-51 days, and so these traceroutes would be stale before the

vantage point could cycle back. On the other hand, 72% of paths

are unchanged at this granularity even after 2 months. So, efficient

identification of changed paths could keep the corpus up-to-date

with a low probing rate, focusing measurements where needed.

Similarly, identification could enable, for example, safe use of the

majority of public traceroutes issued over the previous two months

(and judicious exclusion of those that were stale).

Hence, to fully capitalize on the potential to reuse traceroutes,

we need the ability to determine when any previously measured

traceroute path has changed, but without having to issue any mea-

surements to make this determination. This paper describes a set

of techniques which can do so in combination.

3 GOAL

Our goal is to create a system that keeps a corpus of traceroutes up-
to-date by either refreshing or pruning a traceroute if the measured

path changes. Changes at different granularities may matter to

different use cases. At the finest granularity, a path is a sequence

of IP addresses between a source and a destination. At the coarsest

granularity we consider, a path is a sequence of AS hops. In between,

we consider a path as a sequence of border routers, each of which

has one or more IP addresses (aliases), abstracting away the intra-

AS topology while still identifying multiple links between a pair

of ASes. For our purposes, we consider a change to be an AS-level

change if one or more of the ASes on the path changes, and we

consider it to be a border-level change if one or more border routers

change but it is not an AS-level change (so the AS-path remains

the same, and the border change is at one or more interconnection

points between the ASes).

In this paper, we focus on AS-level and inter-domain (border)

IP-level changes, rather than intra-domain IP-level changes for two

reasons. First, many use cases operate at these granularities, in-

cluding topology discovery and mapping [24, 56], evaluation of

the resilience and robustness of Internet connectivity [29, 43], mea-

surement of inter-domain congestion [20, 48] and traffic engineer-

ing [55], and analysis of peering strategies [60]. Second, intra-AS

IP-level changes can happen frequently at short time scales due to

load balancing, load sharing, and tunneling, which rarely extend

across AS boundaries [6, 28, 78]. As a result, intra-domain path

dynamics exhibit a much higher degree of periodicity compared to

inter-domain changes [38]. Extending to intra-AS IP-level changes

is an interesting future direction.

4 METHODOLOGY

To achieve unprecedented coverage in our ability to detect when

a path is likely to have changed, we developed two sets of com-

plementary techniques. The techniques passively monitor existing

data streams to detect staleness prediction signals that suggest that
particular traceroutes in the corpus are out-of-date because of path
changes. One set of techniques rely on BGP feeds (§4.1) and the

other set leverages publicly available traceroute datasets (§4.2). Sec-

tion 4.3 describes how our techniques can be applied to monitoring

systems to help keep a corpus of traceroutes up-to-date. Figure 2

provides an overview of our technique and their sections and data

sources. Appendix A describes the (existing) techniques we use

IRR

RIPE
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BGPStream

Border
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PeeringDB

IPMap

Data
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Figure 2: Methodology overview showing data sources (left),

proposed techniques (gray boxes), and which data sources

are used by each technique. IP-to-ASmapping andAS border

detection use multiple data sources (Appendix A).

to map an IP-level traceroute to the coarser granularities and to

geolocate IP addresses.

4.1 Detecting Changes from Public BGP Feeds

We seek to use BGP data not to build snapshots of the Internet’s

AS-level routing topology, but to detect when a traceroute in our

corpus is likely to be out-of-date and incorrect. This problem is

challenging because BGP routing activity is not necessarily reflected

in traceroutes, and vice-versa. BGP provides an AS-path towards

an IP prefix, a coarser granularity than the traceroute corpus’s IP-

level path to a (specific) IP destination. Moreover, vantage points

that provide BGP data (e.g., RouteViews and RIPE RIS collectors)

differ from vantage points from which traceroutes can be gathered

(e.g., Ark, RIPE Atlas), both in terms of host ASes and geographic

locations.

We overcome these limitations by developing techniques that

monitor BGP feeds to infer IP-level border changes, where both

types of changes need not result in any route changes at the AS

level (i.e., not visible in BGP AS-paths). Our techniques consider

BGP data obtained from BGP route collectors in a new light: an

update from a BGP router signals that the router has changed its

routing configuration, even if the update carries the same AS-path

as the previous update. Our techniques extract signals of possible

path changes by correlating BGP activity across time and across

vantage points.

First, similar to earlier work [18], we identify traceroute staleness
prediction signals by looking for changes in overlapping BGP AS-

paths. Second, we monitor for changes in the BGP communities

attribute, as such changes may indicate a change in the border IPs,

even if the AS-path remains unchanged [21]. Third, we rely on the

fact that many routers issue updates whenever they change a route,

even though the transitive attributes may be identical to those of

the previous update. Before describing any of these techniques, we

discuss how we collect and preprocess BGP data.

4.1.1 Initializing BGP feeds to monitor. We use BGPStream [61]

to stream updates from RouteViews and RIPE RIS collectors and
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to maintain BGP table views for every route collector peer. We

exclude prefixes more specific than /24, as such prefixes generally

do not propagate far [9] and may indicate misconfigurations or

blackholing [31]. We also strip from all AS-paths any AS used by

Internet exchange points (IXPs) [63], so as to include AS links

between IXP members and not the IXP itself. For every destination

in the traceroute corpus, we find the most specific prefix advertised

by each BGP vantage point (VP), a router peering with a BGP

collector, and we monitor for updates in the VP’s route to the

prefix. Note that different ASes may use a different prefix to the

same destination due to the presence of overlapping prefixes in the

routing system [40].

4.1.2 Inference of AS-level path changes. Given a traceroute τd
to a destination IP d measured at time t0, traversing AS hops

{a1,a2, . . . ,ad }, we determine the times at which AS hops change

in the BGP paths that intersect with τd .
In every fixed-duration time windowwi = [ti , ti+1), ti > t0,

1
we

find the set of AS paths to d that overlap the traceroute (i.e., include

some AS aj from τd ), denoting each by ρv,d,t ′ for ti ≤ t ′ < ti+1;

ρv,d,ti is the AS path used by VP v at the beginning of the window,

and ρv,d,t ′ for ti < t ′ indicates a BGP update from v at time t ′

changing its AS path. From these path segments, we compute the

set of paths P intersect

i,aj ,d whose AS-paths first intersect τd at aj , i.e., aj
is the AS farthest from the destination that is in both τd and ρv,d,t ′ .

We also compute the subset of paths Pmatch

i,aj ,d ⊆ P intersect

i,aj ,d whose AS

hops from aj to the destination traverse the same ASes aj . . . ad
as τd . For each time window wi and AS aj ∈ τd , we compute

the ratio of paths that match the current traceroute in the corpus,

P ratio

i,aj ,d = |Pmatch

i,aj ,d | ÷ |P intersect

i,aj ,d |.
We monitor the resulting time series for P ratio

i,aj ,d across time

windows and generate a staleness prediction signalwhen the Bitmap

detection algorithm identifies an outlier in the time series [79].

We selected a statistical method for outlier detection instead of a

machine learning approach because statistical methods can achieve

better accuracy and execution time for univariate time series with

no seasonality [8]. If P intersect

i,aj ,d = ∅, we consider the value P ratio

i,aj ,d
as missing and not as an outlier. Since P intersect

and Pmatch
count

path updates rather than VPs, outliers in P ratio

i,aj ,d can capture both

shifts of VPs away from the overlapping path and periods of routing

instability, enabling the detection of IP-level changes even when

an AS path reverts back to its original hops.

We need to avoid changes to the time series (and possible outliers)

caused by variation in the underlying set of VPs over time. To

achieve this, P ratio

i,aj ,d is computed over only the set of VPs that

intersected τd at aj when the traceroute was issued at t0.
To prevent persistent path changes from introducing level-shifts

in the time series for P ratio

i,aj ,d that obscure the detection of further

outliers, we remove time windows flagged as outliers in order to

preserve the stationarity of the time series [17, 75], so the persis-

tent change will continue to register as an outlier suggesting the

traceroute is stale.

1
The time window duration is a function of the frequency at which public data is made

available. In this paper we use a time period of 15 minutes in our analysis because it is

the duration of a RouteViews BGP dump cycle. Since RIPE RIS dumps BGP messages

every 5 minutes, a 15-minute window allow us to combine BGP messages from both

projects in every time window.

TIME: 09/23/2020 10:00:12
TYPE: TABLE_DUMP_V2/IPV4 UNICAST
FROM: 195.66.224.175 AS13030
ASPATH: 13030 1299 2914 18747
COMMUNITY: 13030:2 13030:1299 13030:7214 13030:51701
ANNOUNCE: 200.61.128.0/19

TIME: 09/23/2020 12:00:12
TYPE: TABLE_DUMP_V2/IPV4 UNICAST
FROM: 195.66.224.175 AS13030
ASPATH: 13030 1299 2914 18747
COMMUNITY: 13030:2 13030:1299 13030:7173 13030:51203
ANNOUNCE: 200.61.128.0/19

Figure 3: Example change of BGP communities that indicate

the interconnection location of AS13030 and AS1299 (from

London (13030:51701) to Frankfurt (13030:51203)), while the

AS path remains unchanged.

4.1.3 Tracking changes in BGP communities. BGP communities are

often used to encode properties of a route, such as the geographic

location at which an AS learned a route, traffic engineering poli-

cies associated with the route, or preferences for how the route is

processed (e.g., whether it should be prepended or not exported).

These encodings allow a router to communicate information to

other routers in its own AS or other ASes.

Figure 3 provides an example. By convention, the top 16 bits of

a community indicate the AS that defines it. The figure shows BGP

updates from a route collector’s peer 195.66.224.175 (in AS13030) to

the destination prefix 200.61.128.0/19 at two points in time. The AS-

path is the same; the communities, however, differ because border

routers of AS13030 signal their locations by adding communities to

routes they receive from external peers. Specifically, 195.66.224.175

switched from using a route learned from a router at the Telehouse
LON-1 point-of-presence (PoP) in London (13030:51701), to using a

route from the Interxion FRA-3 PoP in Frankfurt (13030:51203)

[58]. While the AS-level path remains identical, the change of peer-

ing point signals a possible IP-level border change in any corpus

traceroute to a destination in 200.61.128.0/19 that goes through

AS13030.

To infer IP-level border changes based on BGP communities, we

monitor for changes in the communities attached to the paths of

BGP VPs that overlap an AS-level suffix of a traceroute τd . We only

consider communities as relevant if they are defined by some AS

aj that intersects τd . If the path received from a VP has a change in

communities associated with aj (i.e., a community aj:xxx is added

and/or removed), we consider it a staleness prediction signal that τd
may have changed, except in two cases which we explain next.

First, since communities are an optional transitive BGP attribute,

the communities values may be stripped out by any AS along the

path. Consequently, we may observe a community appearing or dis-

appearing if there are changes in the AS hops between the intersect-

ing AS a and the VP. For example, suppose a vantage pointv’s path
changes from {v,x ,aj , ...,ad } to {v,y,aj , ...,ad }. If x strips out ev-

ery community before propagating a route, while y preserves the
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communities, then communities may appear in the BGP feed even

though the set of communities added to the route never changed.

To avoid such artificial changes, if the route changes from having to

not having communities (or vice versa), we only consider it a stale-
ness prediction signal if the AS-path remains the same. Additionally,

if a new community appears on the path from v , but that same

community was already on an overlapping AS path from another

VP v ′
, we do not consider it as a new signal of change.

Second, while some communities reflect attributes of border IPs

(e.g., geolocation communities), other communities have no relation

to the traversed IP hops (e.g., control of path prepending). The

semantics of BGP communities are defined by each network, and

documentation, if even publicly available, follows ad-hoc formats.

Additionally, even community values that do relate to properties

of border IPs may not relate to the traceroutes in the corpus. For

example, the BGP path may traverse a different portion of the AS

than the traceroute and may carry a geolocation community for an

interconnection point that is not used by the traceroute. To prevent

false signals due to these issues, our technique automatically learns

over time which BGP communities correlate with changes, using a

process we describe in Section 4.3.

4.1.4 Inferring changes from duplicate updates. To catch changes

that do not manifest as AS path or community changes, we exploit

the observation made in prior work that many seemingly duplicate

updates correspond to changes in attributes that are not propagated

across AS borders, some of which relate to route changes invisible

at the AS granularity (e.g., multi-exit discriminator and IGP cost

changes) [34, 62]. While we can associate changes in AS paths or

BGP communities to particular ASes that appear on traceroutes,

duplicate updates give no direct indication as to which AS triggered

them.

To overcome this challenge, we check for contemporaneous

duplicate/unchanged updates (i.e., updates without changes to AS-

path or communities attributes) to the same destination from multi-

ple BGP collector peers with overlapping AS-paths, suggesting that

the change originated on the common subpath shared by the peers.

In particular, for each AS-level suffix of the traceroute {aj , . . . ,ad },
we find the set of BGP VPs V j,d

0
that share that suffix at time

t0 when the traceroute τd is issued and track the subsets of VPs

V j,d
i ⊆ V j,d

0
that propagate an unchanged update in window

wi . We monitor the time series tracking the number of such peers

U j,d
i = |V j,d

i | for anomalous time intervals (§4.1.2).

A complication happens when some of the peers inV j,d
i have a

common subpath that extends beyond the portion that overlaps the

traceroute. For example, consider a subset of BGP collector peers

that all share a common AS subpath {aj−n , . . . ,aj−1,aj , . . . ,ad },
but only hops {aj , . . . ,ad } are common with the corresponding

traceroute. A later flurry of updates from these VPs could indicate

that the traceroute is out-of-date, or it could be due to a change in

{aj−n , . . . ,aj−1}, which does not overlap the traceroute.

To avoid this issue, we identify each AS ak that is on the paths of

at least 2 VPs inV j,d
0

and is not on the traceroute. For each, we find

the set of VPsV ′k,d
i that traverse AS ak on the way to d but not

the entire subpath {aj , . . . ,ad }, and monitor the number of those

VPs that propagate an unchanged BGP updateU ′k,d
i = |V ′k,d

i |.

Figure 4: Example correlating bursts of BGP updates to infer

potential changes of border-level IP interfaces. The shaded

areas indicate time intervals with outliers. There are two

time intervals with outliers (ta and tb ) for U
j,d
i . The ta out-

lier does not coincide with an outlier forU ′k,d
i , therefore we

infer a potential IP-level border path change for τd at ta . In
contrast, during tb both time series exhibit outliers, which

indicates that a potential change happened outside the over-

lapping subpath between the BGP and traceroute paths.

When the set of VPs V j,d
i have updates in window wi that

are detected as outliers, we check the corresponding series U ′k,d
i

for any and all ASes ak < τd traversed by the VPs in V j,d
i . If

at least one VP did not traverse any other AS ak experiencing

contemporaneous updates, then we generate a staleness prediction
signal for the traceroute. Figure 4 shows an example of how we

correlate the U j,d
i and U ′k,d

i time series to infer IP-level border

changes.

It is possible thatU j,d
i andU ′k,d

i may experience update bursts

in the same time interval for different root causes. However, since

usually at least some VPs inV j,d
0

do not share the same “extra” AS

ak and hence observe AS aj independent from ak , the technique
can usually differentiate such contemporaneous but independent

update bursts from bursts originating only from ak . More sophisti-

cated root cause detection techniques have been proposed in the

past [10, 27, 41], but these works focus on (the simpler case of)

bursts of BGP updates that include AS path changes.

4.2 Detecting Changes from Public Traceroutes

To identify changes that do not manifest in the visible BGP dynam-

ics, we passively consume themassive, publicly-available traceroute

datasets issued by monitoring platforms such as RIPE Atlas and

Ark [12, 67, 68]. For instance, as of April 2020, RIPE Atlas consists of

almost 11K active vantage points that collectively issue more than

10K measurements per second that are made publicly available [67].

While public datasets have lots of measurements overall, they

have two key limitations due to limited probing budgets. First, most

vantage points have recent traceroutes to only a small fraction of

destinations, and so the IP-level overlap between the public dataset

and the monitored corpus may be small. Second, many paths in

public traceroutes are refreshed infrequently, so we cannot rely

on directly observing a path change, unlike with BGP monitoring,

where essentially every path change comes with an update.

To improve the overlap between public datasets and the mon-

itored corpus to identify which corpus traceroutes have become

out of date, our techniques loosen the definition of overlap. First,

because the set of public traceroutes is large overall but contains
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relatively infrequent traceroutes to most individual destinations, we

maintain a sliding window of recent public traceroutes and consider

those that overlap a subpath of a corpus traceroute τ regardless of

their destination, loosening the destination-based monitoring of

Section 4.1. The window size (duration) can be configured based

on the use case, the size of the traceroute corpus being maintained

relative to the budget (if any) available to refresh it, and the relative

impact of removing a traceroute that is still valid versus waiting

too long to prune a stale traceroute. Generally, a shorter window

size allows for more timely staleness detection, while a longer win-

dow size enables staleness detection for more paths. Second, to

further increase coverage without compromising accuracy, we use

two techniques that offer different tradeoffs between the degree

of overlap they require and the granularity of changes they can

detect. One technique requires IP-level hop-by-hop overlap along a

subpath and can detect IP-level border changes (§4.2.1). The other

technique loosens the subpath overlap required, looking for pub-

lic traceroutes that go from ⟨AS1, city1⟩ to ⟨AS2, city2⟩ via border
router r (possibly with other hops in between), but can only detect

router-level border changes (§4.2.2).

Given that our techniques “ignore” that BGP routing is destination-

based when deciding which public traceroutes overlap a corpus

traceroute, we use two approaches to avoid compromising accuracy.

First, we restrict ourselves to subpaths that cross AS boundaries.

Interdomain policies are more stable and provide a more reliable

signal than intradomain routes, where traffic engineering can intro-

duce dynamic and unpredictable routing reconfigurations. Second,

rather than relying on an individual public traceroute as a signal,

we look for significant shifts in the relative frequency at which

public traceroutes uncover different routes between two points

on a corpus traceroute. An individual public traceroute may differ

from a corpus traceroute for reasons including load balancing or

destination-based routing, whereas shifts in the frequency at which

a subpath is observed across many traceroutes suggests meaningful

routing changes.

Section 4.2.1 presents the concrete details of the technique for

IP-level subpaths, and Section 4.2.2 describes how we adapt it for

border-level paths between two cities. Additionally, Section 4.2.3

describes our approach to capture changes in IXP membership.

Capturing IXP membership changes allows us to infer concurrent

path changes that affect multiple sources and destinations.

4.2.1 Inference of IP-level subpath changes. For each corpus trace-

route τd = ⟨ι0, . . . ,d⟩, we process every subpath τ ⟨m,n ⟩ = ⟨ιm , . . . ,
ιn⟩, 0 ≤ m < n ≤ d that traverses at least one inter-AS boundary

as follows:

(1) Among recent public traceroutes (those within the sliding

window), letTmatch

i,m,n be those that traverseτ ⟨m,n ⟩ andT
intersect

i,m,n
be those that go through ιm on the way to ιn (but may follow

a subpath other than τ ⟨m,n ⟩).
(2) LetT ratio

i,m,n = |Tmatch

i,m,n |÷ |T intersect

i,m,n |, the fraction of traceroutes
within a sliding windowwi between ιm and ιn that match

τd .
(3) We construct the time series of T ratio

i,m,n and generate a stale-
ness prediction signal when we detect an outlier in the time-

series using the modified z-score introduced in [37]. We use

the modified z-score instead of the Bitmap algorithm we

s1 1 3

s2

d1

d24 6

ASnASm City cm City cnBorder 
Router r2

5

Border 
Router r'

12
City ck

τ1

τ2

τ3
s3 7

s4 10

8

11

9 d3

d4

τ0

Figure 5: Example ofmonitoring a path in our traceroute cor-

pus for router-level border changes. Traceroute τ 0
(from s1

to d1, green) traverses the subpath τ 0

⟨cm,cn ⟩
= {1, . . . 2, . . . 3}

between cities cm and cn , with hop 2 being on the border

router r between twoASesASm andASn . Traceroute τ
1
(from

s2 to d2, blue) traverses the same city-level hops through a

different subpath τ 1

⟨cm,cn ⟩ = {4, . . . 5, . . . 6}, with hop 5 on

the same border router r as hop 2. As such, both τ 0
and τ 1

are contained in Tmatch(r )
i,cm,cn ⊆ T intersect

i,cm,cn . Traceroute τ 2
(from

s3 to d3, orange) also traverses the city-level hops cm and

cn but through a subpath τ 2

⟨cm,cn ⟩ = {7, . . . 8, . . . 9}, which

crosses a different border router r ′. Therefore, τ 2 < Tmatch(r )
i,cm,cn ,

but τ 2 ∈ T intersect

i,cm,cn still. Finally, traceroute τ 3
(from s4 to d4,

pink) traverses hops 10, 11, and 12, and is not part ofT intersect

i,cm,cn
since it does not intersect any IP in city cn .

used for outlier detection in time series derived from BGP

data (§4.1.2), because we found it to be more robust for the

noisier traceroute data.

Configuration of signal parameters. For each monitored subpath

τ ⟨m,n ⟩ we require that we have at least 20 consecutive windows,
which is widely considered as the minimum recommended number

of observations for robust outlier detection [53]. Accordingly, for

each τ ⟨m,n ⟩ we select the minimum window size that would allow

us to collect 20 consecutive windows with data points. We use a

minimum window duration of 15 minutes, the window size used in

our BGP signals, and a maximum window size of 24 hours, to limit

the amount of public traceroutes that we need to accumulate and

process to 20 days to avoid resource-scaling and performance issues.

If for a given τ ⟨m,n ⟩ we have less than 20 consecutive windows

with data points, we do not consider this subpath for staleness

inferences.

4.2.2 Inference of router-level border changes. If public traceroutes
do not reveal a stable distribution as to how frequently we see dif-

ferent paths between ιm and ιn , it is difficult to determine whether

shifts indicate changes in which paths are in use or unrelated noise

(i.e., the time series T ratio

i,m,n is not amenable to outlier detection).

However, if public traceroutes indicate that two ASes ASm and

ASn consistently use a specific border router r to exchange traffic

between certain geographical locations (regardless of variations in

the IP-level), then later indicate that the same ASes consistently

use a different border router r ′ to transit traffic between the same
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locations, it is likely that the ASes changed routing policy, as rout-

ing decisions such as early exit will generally be consistent across

a PoP or city [70].

We adapt the approach in Section 4.2.1 as follows. LetT intersect

i,cm,cn be

the set of recent public traceroutes that traverse (any) ιm located in

city cm and ASm , and (any) ιn located in city cn and ASn , with cm ,

cn . Let T
match(r )
i,cm,cn ⊆ T intersect

i,cm,cn be the public traceroutes that traverse

the border router r between ⟨ASm , cm⟩ and ⟨ASn , cn⟩. Figure 5

illustrates these sets. We compute the T ratio(r )
i,cm,cn = |Tmatch(r )

i,cm,cn | ÷
|T intersect

i,cm,cn |, for each time windowwi . The size of the time window

is selected as in §4.2.1. When we detect outlier values in theT ratio(r )
i,cm,cn

time series, we generate a staleness prediction signal indicating a

border-level change between ASm and ASn .

4.2.3 Inference of IXP membership changes. We calculate an initial

snapshot of IXP membership at the start of the staleness detection

period based on PeeringDB, which we augment with the ASes

that appear adjacent to IXP interfaces in traceroutes to account

for missing PeeringDB information. We then continue to monitor

the ASes that appear as near-end (left-adjacent) neighbors of IXP

interfaces in our public traceroute feed. We ignore ASes that appear

as far-end neighbors (right-adjacent) of IXPs, since most routers

reply with the ingress interface to traceroute probes, which means

that the next hop of an IXP interface may not correspond to the AS

to which the IXP interface is assigned.

When we detect ASi as a new IXPx member, we search for

(previously-collected) traceroutes that include ASi and another ASj
that is already a member of IXPx in our corpus, since the path may

have changed to go directly fromASi toASj via IXPx . For each such
traceroute, we check the relationship betweenASi and the next-hop
ASk used to reachASj using CAIDA’s AS relationship database [49].
If ASk is a provider of ASi , then we generate a staleness prediction
signal, as ASi may prefer to send traffic to ASj directly using the

new, cheaper IXP interconnection. If ASk is a public peer of ASi
(i.e., peering over a different IXP), we also generate a signal, since

we assume shortest AS path routing when two neighbors have the

same peering relationship (and BGP Local Preference). If ASk is a

private peer (i.e., the peering is not over an IXP interface) we do not

generate a signal, since private peers are often assigned higher BGP

Local Preference values than public peers [64]. We do generate a

signal in the case of routing through a private peer if such changes

were observed in public traceroute feeds, which allows us to infer

that ASi assigns equal BGP Local Preference values to public and

private peers.

4.3 Using Staleness Prediction Signals

Depending on the goals and constraints of a system, the system

may use staleness prediction signals to decide which traceroutes

to refresh, to prune stale traceroutes, or to treat inferences made

with stale traceroutes with lower confidence. This section discusses

general approaches to using signals in real systems.

4.3.1 Refreshing Stale Traceroutes and Signal Calibration. Once
stale traceroutes are detected in a corpus, in many scenarios it is

desirable to issue new traceroutes to refresh them. However, the

number of traceroutes signalled as stale can exceed the measure-

ment budget, particularly in systems that require monitoring a large

corpus (e.g., [18, 46, 50, 83]).

Each corpus traceroute crosses some set of borders between ASes.

Each border may be monitored by zero or more of our techniques

depending on the visibility provided by available vantage points.

Some of the techniques monitor the use of the border(s) on the way

to particular destinations (§4.1), whereas others monitor the use of

the border along a subpath independent of destination (§4.2). We

say a technique provides a potential staleness prediction signal for

a border (and associated destination or subpath) that it monitors.

We say a potential signal and a corpus traceroute are related if

the potential signal monitors a border and destination/subpath of

the traceroute. At any point in time, some of the potential signals

related to a traceroute may indicate that it is stale (i.e., the technique

generated a staleness prediction signal since the traceroute was

issued). Any related potential signal for which a staleness prediction
signal has not been generated implicitly indicates that the technique

has not detected a change at that border.

To prioritize which traceroutes to reissue, we monitor the effec-

tiveness of each potential signal over time and prioritize those that

are effective. To capture effectiveness, every time we remeasure

a traceroute, we evaluate the correctness of each potential signal

related to the (old) traceroute. A signal that indicated a change

in a portion of the old traceroute is considered a True Positive

(TP) if that portion of the path has actually changed, or a False

Positive (FP) if that portion of the path remains unchanged. A po-

tential signal that (implicitly) indicated that a portion of a path

had not changed is a True Negative (TN) if that portion remains

in the new traceroute, or a False Negative (FN) if that portion is

not in the new traceroute. For the vantage point v that issued the

traceroute and each related potential signal s , we maintain running

tallies TPv,s , FPv,s , TNv,s , and FNv,s over a sliding window of

the last l = 30 (by default) signal generation windows to allow

for changes over time. We use these tallies to maintain the true

positive rate TPRv,s = TPv,s/(TPv,s +FNv,s ) and the true negative
rate TNRv,s = TNv,s/(TNv,s + FPv,s ). Before the initial sliding
window is “full” of l windows, we consider TPRv,s and TNRv,s to
be uninitialized.

We refresh a number of measurements at the end of each staleness
prediction signal generation windowwi according to the probing

budget available for refreshing the corpus. Let Si be the set of

staleness signals that predict a change at the end of window wi ,

and
¯Si be the set of potential signals that do not predict a change.

Let Sv
i ⊆ Si and ¯Sv

i ⊆ ¯Si be the subsets related to a traceroute

from vantage point v .
We decide which measurement to issue using the following steps:

(1) We first choose the traceroute VP v with the highest relative

TPR across all VPs v ′
with signals in Si . More precisely, we

choose v = argmaxv
∑

s ∈Svi
TPRs,v/

( ∑
v ′

∑
s ∈Sv′i

TPRs,v ′
)
. This

selection prioritizes VPs whose measurements more often

detect changes, increasing efficacy of the refreshing process.

(2) For simplicity, we calculate a single probability for the se-

lected VP v to refresh each of its traceroutes that a related



IMC ’20, October 27–29, 2020, Virtual Event, USA Vasileios Giotsas et al.

staleness prediction signal indicates is stale. The potential sig-
nals may not agree on which traceroutes have changed. We

combine their “opinions” to decide a probability of refreshing

a traceroute, as follows: P refreshv,i =

∑
s∈Svi

TPRs,v∑
s∈Svi

TPRs,v+
∑
s∈S̄vi

TNRs,v
.

This calculation potentially considers TPR and TNR inferred

across multiple traceroutes, multiple borders per traceroute,

and multiple potential signals per border. The potential sig-

nals may “disagree” on whether or not their monitored por-

tions of traceroutes need to be refreshed. The TPR of signals

that indicate staleness will drive up the likelihood of refresh-

ing a traceroute, and the TNR of potential signals that do not

indicate staleness will drive down the likelihood.

(3) For every signal in Svi we iterate over all related corpus trace-

routes from v–that is, the set that the signal monitors and

hence now suggests are stale–and, if measurement budget

remains, we issue a remapping traceroute with probabil-

ity P refreshv,i .

(4) If after executing step 3 there is still measurement budget

available, we remove v from the set of VPs that can be se-

lected and we repeat the process from step 1.

(5) While budget remains after the following process, which

in particular happens during bootstrapping while TPRv,s
and TNRv,s remain uninitialized for many vantage points

and signals, we order the signals according to the attributes

in Table 1, ordered by their priority from highest to lowest.

The first 5 attributes compare the overlap of the traceroutes

inferred as stale and the public traceroutes or BGP feed that

triggered the inference. When two signals are tied for one

attribute, before moving to the next attribute we use the

number of VPs as a tie-breaker for BGP-based signals or the

deviation from the staleness detection z-score for traceroute-

based signals.We use this technique instead of random signal

selection to bootstrap our TPR calculations using the best

possible signals for each vantage point, so that we avoid

building low scores for signals that can be potentially useful

for a vantage point but may not be selected due to a bad

start.

4.3.2 Revoking stale signals. Paths often change from a preferred

prevalent route to a less-preferred route temporarily during disrup-

tions, before changing back to the preferred prevalent route after

the disruption is solved [19]. Some of our techniques provide not

just a signal of when a corpus traceroute has gone stale but also

if it later reverts to its original route. When all AS path (§4.1.2),

community (§4.1.3), IP-level subpath (§4.2.1), and inter-city border

router (§4.2.2) staleness prediction signals associated with a particu-

lar corpus traceroute revert to the value they had when the corpus

traceroute was issued, we discard the staleness prediction signals
and consider the corpus traceroute fresh again without reissuing a

traceroute.

5 EVALUATION OF PRECISION AND

COVERAGE

This section evaluates our techniques in the following scenarios:

(1) Section 5.1 presents a retrospective evaluation to evaluate the

coverage and precision of our staleness prediction signals. We

Table 1: Ordered list of signal attributes used to sort signals

by priority when choosing measurements to refresh stale

traceroutes during the bootstrap period.

Priority Signal Attribute

1 Longest IP-level path overlap

2 Longest AS-level path overlap

3 VPs in the same AS and city

4 VPs in the same AS

5 VPs in the same city

6 AS-level change

7 Border-level or IXP change

compare traceroutes across consecutive rounds of periodic

measurements and assess the relationship between changes

and signals that occur between the measurement rounds.

(2) Section 5.2 presents a live evaluation, in which we use our

techniques to maintain a traceroute corpus for two months.

We compare the efficacy of issuing refresh traceroutes using

our techniques and random choices.

(3) Section 5.3 compares our techniques with earlier approaches.

Metrics. We evaluate the precision and coverage of our tech-

niques in detecting path changes. We define precision as the fraction
of signals that identify a path change in our dataset, and coverage
as the fraction of path changes for which our techniques generate

signals. Precision is the ratio between the number of correct signals

(true positives) and the number of signals (positives). Coverage is

the ratio between the number of correct signals and the number of

path changes (true positives plus false negatives).
2

Public BGP, traceroute feeds, and traceroute processing. We collect

all the available RouteViews and RIPE RIS data from BGPStream

to compute signals using our BGP-based techniques, starting two

days prior to the initialization of the corpus of traceroutes. During

our measurement period, RouteViews and RIS offered 710 IPv4

VPs in 485 ASes, 84% of which advertised their full BGP table to

the collectors. The public traceroutes we use for each scenario are

explained in their respective subsections. Appendix A describes

standard approaches we use to process traceroutes.

5.1 Retrospective Evaluation

5.1.1 Traceroute corpus. We use the RIPE Atlas anchoring mea-

surements, which issue two types of traceroutes every 900 seconds:

(1) A traceroute to every Atlas Anchor (a device with more CPU,

memory, and network bandwidth than regular Probes) from

approximately 400 Atlas Probes. The set of Probes can differ

across Anchors but is kept stable across rounds for each

particular Anchor. If a Probe becomes inactive, it is replaced.

(2) A mesh of traceroutes between all Anchors.

We start collecting anchoring measurements to 497 Anchors on

t0 = 2019-02-15. Every 900-second round, the anchoring measure-

ments produce about 446K traceroutes, 199K traceroutes between

Probes and Anchors, and 247K traceroutes between Anchors.

Figure 1 shows the fraction of border-level and AS-level paths

that are different from their initial t0 traceroute over a period of

2
We use the term coverage rather than recall (calculated the same way) because false

negatives (undetected changes) are mainly caused by a lack of vantage points in the

proper locations.
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Table 2: Precision and coverage for each path staleness prediction technique for the retrospective evaluation. Each technique

has high precision, and combining all techniques is necessary to achieve high coverage.

Coverage

AS or border changes AS-level changes Border-level changes

Technique #Signals Precision Individual Unique Individual Unique Individual Unique

BGP AS-paths 377,067 0.82 0.13 0.07 0.28 0.16 0.05 0.02

BGP communities 267,571 0.80 0.09 0.05 0.03 0.01 0.12 0.07

BGP update bursts 363,368 0.72 0.11 0.03 0.04 0.01 0.14 0.04

BGP Total 1,008,006 0.74 0.27 0.29 0.24

Colocation changes 305,909 0.85 0.13 0.08 0.12 0.06 0.13 0.10

Traceroute subpaths 1,244,558 0.81 0.51 0.35 0.42 0.23 0.56 0.41

Traceroute borders 261,965 0.83 0.11 0.07 0.19 0.09 0.1 0.05

Traceroute total 1,812,432 0.82 0.69 0.70 0.67

All techniques 2,820,438 0.80 0.81 0.86 0.79

two months. Path changes accumulate over time, with about 15% of

the AS-level and 28% of the border-level paths changed at the end

of the 60-day measurement period. On the one hand, these fractions

are high enough that inferences made using this corpus would be

significantly hampered if traceroutes are not refreshed over time,

which is not possible for most large-scale traceroute campaigns due

to rate limits that prevent refreshing all paths frequently enough.

On the other hand, the fraction of “fresh” traceroutes remains high,

showing that one can indeed cope with stringent rate limits by

reusing archived traceroutes if one is able to detect and filter-out

(or selectively refresh) stale traceroutes.

We divide the available VPs, i.e., Atlas Probes and Anchors, into

two randomly selected subsets of equal size, P
public

and Pcorpus. Our
goal is to maintain up-to-date traceroutes from the VPs in Pcorpus
to the Anchors, a corpus of 223K (source, destination) pairs.

5.1.2 Detecting changes. For our traceroute-based techniques, we

use the publicly available traceroutes from 4,372 RIPE Atlas VPs

in P
public

, excluding traceroutes toward the targets of the anchor-

ing measurements. By excluding all traceroutes to destinations of

the anchoring measurements and public traceroutes from VPs in

Pcorpus, we avoid biasing our results by deriving change signals

from traceroutes that closely reflect the corpus we are trying to

maintain. This setting is appropriate for evaluating our techniques

because it mirrors an intended use case of relying on public RIPE At-

las traceroutes to aid in maintaining a researcher’s own RIPE Atlas

traceroutes, since it is the most widely used large-scale traceroute

platform today, with the most stringent rate limits.

5.1.3 Results. Table 2 presents the number, precision, and coverage

of our signals across the 60-day period. All techniques have high

precision and contribute unique inferences (i.e., inferences not made

by any other technique), so all techniques are useful and necessary

to achieve the combined coverage of 79% for border-level changes.

By monitoring for changes in BGP AS-paths and BGP commu-

nities as well as for bursts of BGP updates, we are able to identify

27% of the changes overall and 24% of the border-level changes.

Further, when our BGP communities technique indicates that a

traceroute is stale, the traceroute has actually changed 80% of the

time. The technique that monitors for BGP update bursts is not as

precise, at 72% precision. Our three traceroute-based techniques

identify 69% of the changes, including 67% of border-level changes.

(a) Precision (b) Coverage

Figure 6: Precision and coverage of signals across all tech-

niques and VPs for the retrospective evaluation.

Combined they have a precision of 82%, and each of the techniques

individually have precision above 81%. Combined with the BGP

techniques, we identify 79% of all border-level path changes and

86% of AS-level changes, without issuing any online measurements.

As a comparison point, monitoring of BGP feeds for changes in

overlapping AS paths, a technique used in other works [18], only

captures 13% of the changes in the traceroute corpus. The poor

coverage is partly attributable to the technique only monitoring

for changes in AS-level paths, but it only captures 28% of changes

even if we limit ourselves to considering AS-level changes in the

traceroutes. Since our full set of techniques capture 86% of AS-level

changes, they offer significant utility over earlier approaches even

for the large number of prior systems (e.g., [41, 83]) which only use

traceroutes that have been converted to AS-level paths.

Figure 6a shows the precision across all signals and VPs com-

bined for each day in the evaluation period. At the start of the

evaluation period about 60% of the inferences are true. Our tech-

niques for generating signals iteratively improve over time leading

to more than 80% correct inferences after the mid-point of the eval-

uation period and almost 90% at the end, for both AS-level and

border-level changes. This high precision implies that a system

can effectively use our signals to refresh traceroutes or to iden-

tify stale routes. The calibration process is especially beneficial for

determining which BGP communities correlate with border-level

path changes and which of the VPs in public feeds of routing data
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(a) Border-level precision of

traceroutes issued using sig-

nals versus at random.

(b) Fraction of path changes captured

by random traceroutes also captured

by staleness inference signals.

Figure 7: Results of live evaluation.

correlate with the traceroute sources in the traceroute corpus (i.e.,

calibration learns the TPR achieved from different VPs). Appendix B

demonstrates how effective tuning of community-based staleness
prediction signals is at pruning at false positives over time.

Figure 6b shows that coverage is stable over time, and usually

above 80%. For the subset of changes that we even have a chance

of detecting using one of our techniques (i.e., changes which have

some overlap with the data we use to generate signals), coverage

is even higher at over 90%. This high coverage implies that a real

system can detect most path changes using our signals, particularly

on paths where we monitor changes. Moreover, a system using our

techniques knows the set of paths that our techniques are capable of

monitoring and can treat paths where they lack visibility differently,

if necessary. Appendix C examines reasons for the high coverage.

5.2 Live Evaluation

Next, we evaluate the performance of our staleness prediction tech-

niques on a live monitoring system restricted to issue 10 thousand

traceroutes per day, RIPE Atlas’s rate limit per non-privileged user.

5.2.1 Traceroute corpus. To expand our evaluation to a larger set

of destination IPs, we need to sidestep the need for repeated mea-

surements along every path. Therefore, in our live experiment, we

evaluate our signals based on the traceroutes we issue to refresh

the traceroutes signaled as stale, allowing us to use a larger dataset

as our initial traceroute corpus, with more destinations.

Our live evaluation uses the built-in #5051 RIPE Atlas measure-

ment as the initial traceroute corpus. The built-in #5051 measure-

ment aims to map the Internet topology by probing the .1 address

in each /24 prefix visible in the RouteViews and RIPE RIS public

BGP feeds [66]. A #5051 measurement round is performed every

900 seconds, but not all Probes participate in every round. Since the

set of destinations is very large, it is not possible to measure each

prefix from every Probe. RIPE Atlas randomly allocates destinations

to Probes in every round. We use one day of traceroutes from the

#5051 measurement as our initial corpus of 993,948 traceroutes.

5.2.2 Detecting changes. We executed the live evaluation for two

months after the initial measurement, issuing 10K “refresh” trace-

routes per day at random and 10K using signals generated by our

techniques. We use the #5051 measurements on the remaining days

to generate signals using our traceroute-based techniques. When

the number of signals exceeds the probing quota, we choose trace-

routes to refresh based on signal performance for each VP (§4.3).

5.2.3 Results. Figure 7a compares the precision of the traceroutes

issued to refresh the corpus (i.e., the fraction that revealed a path

change), when they are issued at random or chosen based on stale-
ness prediction signals. Our results show that chosen signals have

precision generally above 80% across the 2 month evaluation pe-

riod, while random selection exhibits much lower precision, wasting

measurement budget. The figure shows precision for border-level

changes, and results for AS-level changes were similar (not shown).

Random traceroutes work better over time because more paths

change at least once as time progresses.

Figure 7b shows the fraction of traceroute changes captured by

the random traceroutes that were flagged by staleness prediction
signals. We expect the random traceroutes to be an unbiased sample

of the (unknown) set of all changes in the monitored paths, so

coverage of changes detected by our random traceroutes should be

representative of the overall coverage across all changes. For AS-

level changes coverage is typically above 80%, while for border-level

changes coverage fluctuates around 70–75% after 20 days.

5.3 Comparison with dtrack and Sibyl

We compare the efficiency of signals for maintaining an up-to-date

traceroute corpus (by issuing traceroutes to refresh paths with

staleness prediction signals) with three other approaches. The first

alternative we consider is periodic round-robin route traceroutes,

similar to measurement campaigns on CAIDA’s Ark and RIPE Atlas.

Second, we consider Sibyl’s approach to patch a corpus of exist-

ing traceroutes with new traceroutes [18]. Whenever Sibyl remea-

sures the route to a destination, it compares the new route with the

previous route. When Sibyl finds a path change from subpath s to
another subpath s ′, it patches all other traceroutes in the corpus

that traverse s to traverse s ′ instead. We apply Sibyl’s patching and

pruning on top of periodic traceroutes: any route change detected

in periodic traceroutes is used to patch other traceroutes.

Third, we consider dtrack [19], which shares the same goal of

our techniques: reduce measurement cost to more accurately track

path changes. dtrack measures Internet paths once at startup to

build the traceroute corpus, then starts a change detection phase

where it sends single-packet TTL-limited probes to varying hops

on measured paths to detect changes. During the detection phase,

dtrack probes each path at a rate proportional to the path’s es-

timated probability of change. Whenever a change is detected,

dtrack runs traceroute to remap the change and update the corpus.

To evaluate the four techniques (ours plus the three alternate

approaches) when configured at various rate limits, we gather a

dataset at a much higher rate limit to use as a pseudo-ground-truth
3
.

We emulate the four approaches by having them decide which mea-

surements to remeasure at what times based on their individual

criteria, using the pseudo-ground-truth to determine the result of

those measurements, since it has frequent measurements of all

paths. As the pseudo-ground-truth, we collect a dataset of path

changes between 1–13 April 2019 from a PlanetLab node, using

dtrack to maximize the number of changes detected. Over the

period, dtrack monitored 5500 paths from the PlanetLab node,

and the measurements traversed 2819 ASes. including 91% of those

3
We say pseudo-ground-truth because it may still miss short-lived path changes.



Repurposing Existing Measurements to Identify Stale Traceroutes IMC ’20, October 27–29, 2020, Virtual Event, USA

10−4 10−3 10−2

Average Per-Path Probing Rate [pps/path]
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 B

or
de

r
Ch

an
ge

s D
et

ec
te

d CA
ID

A 
Ar

k

RI
PE

 A
tla

s
  @

55
00

   
 p

at
hsSignals (optimal)

Signals
DTrack + Signals
DTrack
Round-robin + Sibyl
Round-robin

Figure 8: Fraction of changes detected for signals, dtrack,

Sibyl, and round-robin traceroutes as a function of prob-

ing budget. Sibyl and round-robin traceroutes miss many

changes. Signals outperform dtrack for low probing bud-

gets, but are limited by their coverage. dtrack+signals

demonstrates the benefits of combining both.

with more than 500 ASes in their customer cones [49]. This pseudo-

ground-truth dtrack was configured with a detection probing

rate of 30 pps and unlimited budget for remapping; the total aver-

age probing budget is 67 pps. We emulate round-robin traceroutes,

Sibyl’s patching, dtrack, and signals on lower probing rates, which

would be necessary for a corpus to larger sets of destinations or

from constrained vantage points such as RIPE Atlas or Ark.

When emulating Sibyl’s patching, we consider an optimistic

scenario where we do not patch a traceroute if it would introduce

an error relative to ground truth and we do not penalize Sibyl

when it occurs. In a real system, a traceroute would be triggered

when a signal is generated, but for our trace-driven emulations, we

need to match signals with independent, unsynchronized measure-

ments. To accommodate dtrack, RIPE Atlas, and BGP collectors

observing a routing event at different times, e.g., because of BGP

propagation delay, batching at BGP collectors, and unsynchronized

traceroutes, we allow a signal to match a route change within 30

minutes of the signal’s generation window.
4
If there are multiple

possible matchings, we choose the maximum matching that min-

imizes the difference between the start of each signal’s window

and the change the signal is matched to. If a signal is matched, it

triggers a traceroute that remeasures the changed path. If a signal

is not matched to any change in the dtrack dataset, it could be

that dtrack missed a path change, but we conservatively choose

to consider the signal a false positive that triggers a traceroute and

wastes probing budget since there is no change.

As an additional comparison, we consider an “optimal” mapping

of signals that ignores false positives to capture the impact of future

improvements to signal accuracy, andmatches signals to all changes
within 30 minutes of their windows to capture potential coverage

if public data allowed signal inference at shorter time scales.

Figure 8 shows the fraction of border-level changes detected by

each approach at different average per-path probing rates. As prob-

ing rate increases, more changes are detected. Signals make efficient

use of limited probing budgets, where it outperforms dtrack, but

are limited by their coverage for high probing budgets. Compared

4
30 minutes is a compromise between synchronicity, the signal-generation window

duration, and dtrack’s detection probing rate.We expect 30 minutes to cover dtrack’s

detection delay, in case signals are generated before dtrack’s detection.

Figure 9: Cumulative distribution of staleness prediction sig-
nals per load-balanced and non-load-balanced segment.

to our evaluation on RIPE Atlas data in §5.1, signal coverage is

lower in the dtrack dataset (52%), possibly due to dtrack’s detec-

tion of shorter-lived border changes that Atlas traceroutes are not

frequent enough to observe. Sibyl’s patching improves over peri-

odic traceroutes but is inferior to dtrack and signals. The figure

shows vertical lines indicating the average per-path probing rate for

CAIDA’s Ark [12] and RIPE Atlas when configured to monitor 5500

paths, as in our dataset. The results show that signals would pro-

vide significant benefit for these systems, even if they ran dtrack

instead of periodic traceroutes. Optimal signals outperform all ap-

proaches until the probing budget is enough to remap all signals,

at which point optimal signals flatlines due to limited coverage.

Although the optimal line shows there is room for improvement,

our proposed signal-generation techniques and public data already

capture most of the changes in the dtrack dataset.

5.4 Impact of Load Balancing

Paths with load balancing can cause traceroutes to change over

time, even without an underlying path change, potentially intro-

ducing false positive staleness prediction signals. Recent work found
that 81% of load balanced paths diverged and reconverged within

the same AS [77]. These instances of intradomain load balancing do

not impact our staleness prediction signal techniques, since we focus
on detecting path changes that occur at AS borders. So, we evaluate

how our techniques act in the uncommon case of interdomain load

balancing [3, 77], where the load balanced paths diverge in one AS

and reconverge in another AS. We obtained the divergence and

convergence IP addresses of interdomain load balanced paths de-

tected by Diamond Miner [77]. The set of load balanced alternatives

between a divergence and convergence point is called a diamond.
The authors of Diamond Miner provided us with 81, 581 inter-

domain diamonds collected in August 2019. The diamonds include

3, 627 divergence IP addresses and 58, 647 convergence IP addresses

between 5, 567 AS pairs (644 divergence ASes and 3, 197 conver-

gence ASes). We collected public RIPE Atlas traceroutes between

2019/08/1-14 that traverse the same pairs of divergence and con-

vergence addresses. In total we found 3, 181, 062 traceroutes that

traverse 1, 711 diamonds that involve 635 divergence and 1, 583

convergence IPs. We computed staleness prediction signals as de-
scribed in Sections 4.2.1 and 4.2.2 (using a 12-hour window). Our

techniques did not detect any staleness prediction signals (false or
otherwise) overlapping 91.2% of the 1, 711 diamonds.
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Figure 10: Precision of staleness prediction signals for load-
balanced and non-load-balanced paths.

To give context to the performance of our techniques on the

168 diamonds (9.8%) where we detect overlapping staleness pre-
diction signals, we collected the set of RIPE Atlas traceroutes that

passed through the same AS pair as one of the 1, 711 diamonds

but did not include a divergence IP address (i.e., did not include

a known load balancer, although for simplicity we will refer to

them as non-load-balanced paths). In total, our techniques detected

staleness prediction signals for 7.1% of the non-load-balanced seg-

ments for the same time period, which we compare to the staleness
prediction signals detected for the segments overlapping the 168

diamonds. Figure 9 compares the distribution of staleness prediction
signals (i.e., number of changes predicted) per interdomain segment

that are load-balanced (diamonds) versus segments that are not load-

balanced. The graph shows that our techniques detect a similar

number of staleness prediction signals for the two types of segments,

with non-load-balanced paths predicted to change slightly more

often. This result suggests that our techniques are able to account

for the varying paths observed by traceroutes across a load bal-

ancer without falsely inferring many path changes. Figure 10 shows

the distribution of the precision of these signals. Whereas signals

for non-load-balanced segments have a median precision of 84%,

signals for path segments with load balancers exhibit a median

precision of 68%, suggesting that load balancers sometimes trick

our techniques into falsely inferring a path has changed.

The precision of our traceroute-based techniques is 82% over-

all (Table 2), and this analysis suggests that one source of errors

is interdomain load balancing, which is only known to occur in a

small fraction of ASes (representing 19% of diamonds according

to Diamond Miner’s lenient definition of interdomain [77] that in-

cludes some diamonds that end at but do not cross a border, or 4.7%

according to a more conservative definition [3]). Even for paths

traversing load balancers, our precision remains high. In the future,

we can investigate how to incorporate Diamond Miner results into

our techniques, perhaps by not considering as an outlier changes

that may just represent shifts across branches of a diamond.

6 EVALUATION OF USE CASES

Our techniques (i) improve a state-of-the-artmeasurement tool (§6.1);

(ii) enable efficient (re)use of rate-limited traceroutes (§6.2); and (iii)

improve a system that relies on a traceroute corpus (Appendix D).

6.1 Integration with dtrack

We integrate our techniques into an extended version of dtrack,

dtrack+signals, that checks for path changes whenever our tech-

niques generate a signal. We match signals and route changes as

described in §5.3. For traceroute-based signals, dtrack+signals

sends a detection probe to one of the hops inferred as changed by the

Figure 11: Number of fresh and stale RIPE Atlas traceroutes

accumulated from 01–15 May 2020. Signals identify which

traceroutes remain fresh and safe to use.

signal; for BGP-based signals that identify the AS-border where the

change occurred, dtrack+signals sends a detection probe to the

far end of the border link that triggered the signal; for BGP-based

signals that identify a set of ASes that might have triggered the

change, dtrack+signals sends a detection probe to the last hop in

each AS. If a probe confirms the change, a remap is triggered. These

single-probe checks for path changes integrate seamlessly into

dtrack’s change detection, allowing dtrack+signals to spend

one or a few probes to identify and ignore incorrect signals (false

positives). Our signals help dtrack+signals target paths that have

likely changed, increasing probe utility and detecting more changes.

Our signals require dtrack+signals to invest probes into verifying

changes; however, signal verification takes one or a few probes, and

signal precision is high (Table 2), resulting in improved detection.

Figure 8 shows that dtrack+signals performs similarly to sig-

nals alone when the probing budget is low, but it is not limited

by coverage as the budget increases as the excess budget can be

used by “vanilla” dtrack’s detection probes allocated according

to its predictions of which paths are least stable. For example, at

Ark’s probing budget, dtrack+signals detects 24% more border

changes than dtrack. As the probing budget increases, the rel-

ative benefit of signals and the difference between dtrack and

dtrack+signals decreases. However, signals still provide gains

even at high probing budgets as signals help dtrack+signals de-

tect when paths become unstable after long stability periods, a

transition that is particularly hard to predict [19]. With a probing

budget of 0.003 pps/path, vanilla dtrack misses changes after 25%

of true positive staleness prediction signals (not shown).

6.2 Reusability of Archival Traceroutes

In addition to keeping an individual system’s corpus fresh, our

staleness detection techniques can be applied to the huge corpus of

publicly accessible traceroutes, enabling two related applications.

First, by identifying traceroutes collected over a long time window

that are still valid, these traceroutes can be used to generate a set of

usable traceroutes vastly larger than the probing budget allocated

to individual experiments. Second, they can be applied to requests

for new traceroutes to identify those that can be safely served by an

existing traceroute, giving requesters an option to reduce system

load and preserve their budgets for other measurements.
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This section evaluates those two use cases on the 1.15 billion

public RIPE Atlas traceroutes issued in the first two weeks of May

2020. We classify a traceroute as “stale” if our techniques detect at
least one staleness prediction signal after it is issued. If we detect no
signals of change for a traceroute, we characterize it as “fresh” if our
techniques and vantage points suffice to monitor every border-level

interconnection, or “unknown” if they can monitor only a subset

(or none). We use all public RIPE traceroutes for our techniques, to

understand the full potential of reusing archived traceroutes.

Figure 11 shows that, at the end of our measurement period,

RIPE Atlas has executed over 690 million traceroutes (60%) that are

still fresh in terms of border-level IP hops and therefore reusable.

As a point of comparison, RIPE Atlas limits a user to 1M credits per

day at a cost of 10-30 credits per traceroute, so a user can issue up to

1.4 million traceroutes in two weeks. The set of available RIPE Atlas

Probes changes over time, and 4% of the reusable traceroutes cannot

be remeasured because the source Probe stopped being available

(“fresh, dead Probe” ). While proportionally small, the number of

“fresh” traceroutes that can be safely used but not measured again

is over 27 million. While stale traceroutes also increase over time,

RIPE Atlas accumulates new traceroutes at a faster rate.

We next investigate the benefit that this high degree of reusability

can have on preserving measurement budget and reducing system

load. Of the 1.15 billion traceroutes, 985 million are user-defined

measurements (UDMs) rather than RIPE’s built-in measurements.
5

We consider a use case of needing the border-level path from (any

Probe in) a particular ⟨AS, city⟩ to a particular destination prefix.

We find that 90.3% of the UDMs (a median of 66 million traceroutes

per day) can be satisfied by an already measured traceroute. How-

ever, such a drastic reduction of the number of public traceroutes

will also affect our ability to detect stale traceroutes. To estimate

the actual fraction of UDMs that can be avoided, we assume that

a UDM traceroute that can be satisfied by an existing traceroute

is not measured and exclude it from the traceroutes that our tech-

niques use to generate staleness prediction signals. The reduction
in available traceroutes also reduces coverage and requires more

UDMs. Under these conditions we find that 68.6% of the UDMs can

be avoided (median of 48.2 million measurements per day).

7 RELATEDWORK

Section 2 discussed research which is most closely related to and

motivates ours. This section summarizes other work.

Reducing number and cost of traceroute measurements. Given re-

stricted budget constraints in measurement platforms, researchers

have proposed techniques to reduce the number of traceroute mea-

surement and the cost of individual measurements. Approaches

include avoiding redundant TTL-limited probes to routers close

to measurement sources and destinations [19, 22], pruning mea-

surement sources and destinations without sacrificing network

coverage [7, 71], or reducing the cost of route measurements [4, 78].

Our techniques are complementary to these approaches.

IGP/iBGP/eBGP dynamics. Teixeira et al. [73, 74] studied the im-

pact of hot-potato changes on BGP dynamics, and found that up to

5
We consider a measurement a UDM if it has ID greater than 1,000,000 and is not an

Anchoring measurement [66].

5% of the externally-visible BGP updates of a backbone AS were

triggered by IGP events. These results have been confirmed by

follow-up work on the same network by Wu et al. [80]. Similarly,

Agarwal et al. [2] showed that local IGP engineering caused up to

25% of traffic with neighboring ASes to shift egress points. Park et

al. [62] investigated the root causes of BGP update duplicates, and

proposed a methodology to correlate duplicate updates with iBGP

dynamics. In particular, they observed that 96% of duplicate eBGP

updates were caused by an intradomain routing change which up-

dated a non-transitive BGP attribute, such as Cluster-ID and MED

values. Our work builds on these insights to detect IP-level changes

that generate BGP activity without AS-path changes.

Correlating changes across measurements. Fazzion et al. [25] pro-

posed techniques to verify if a change observed in a traceroute also

impact traceroutes from that source to other destinations. Their

techniques require active measurements to verify inferences.

Sibyl [18] is most similar to this paper. In addition to traceroute

patching described and evaluated in §5.3, Sibyl also converts each

traceroute to AS granularity, then monitors BGP route collectors for

overlapping paths to the destination. If the BGP feed later reveals a

change in the overlapping portion, but the first AS in the overlap

remains in the new AS path, Sibyl infers that the traceroute is out

of date. We build on this AS path monitoring (§4.1), and our other

techniques significantly extend Sibyl’s, allow detection of more

changes (§5.3), and require no active measurements.

8 CONCLUSION

In recent years, the number of available traceroute vantage points

has greatly increased, thanks to platforms such as RIPE Atlas. This

increase enables expanded coverage of the Internet, but the vantage

points are severely resource constrained and rate limited. These

rate limits make it challenging for systems and studies that use

large sets of traceroutes to reason about the Internet: accumulating

measurements over a longer time period increases coverage at

the expense of increased staleness, with path changes during the

measurement interval affecting the results.

Our work overcomes this tradeoff by inferring which traceroutes

in a corpus have gone stale due to path changes, allowing other

traceroutes to be safely used for long periods of time and avoiding

wasting measurements on unchanged paths. Our techniques use

patterns in BGP updates as signals for changes not explicitly visible

in the updates, and they monitor publicly available traceroutes to

look for changes that overlap the corpus. Combined, they detect 81%

of path changes. By recycling publicly available data, our techniques
enable the safe reuse of traceroutes known to be unchanged and

reduce the measurement budget needed to keep a corpus fresh.
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A PROCESSING TRACEROUTES

IP-to-ASN mapping. Wemap IP-level hops to ASNs using longest

prefix matching on BGP prefix advertisements received by the

RouteViews and RIPE RIS collectors. If a prefix is missing in global

routing tables, or in the case ofMulti-Origin AS (MOAS) prefixes, we

use prefix assignment and delegation data from RIR databases. We

use traIXroute to correctly map IXP interfaces to ASNs [59]. When

mapping traceroute IPs to ASes, we merge consecutive identical AS

hops into one; if two hops that map to the same AS are separated

by one or more unmapped hops, we also merge them together. We

ignore all traceroutes whose AS mapping contains AS loops.

Mapping AS boundaries. To infer the AS boundaries in trace-

routes, we use bdrmapIT if the source of the traceroute data is

compatible with it [51]. Otherwise we use MAP-IT [52]. MAP-

IT may not be able to infer AS interconnections that do not ap-

pear in an adequate number of traceroutes. If for an interconnec-

tion ⟨IPASx , IPASy ⟩ MAP-IT did not pinpoint the border IP and

bdrmapIT did not apply, we assume that both IPs are part of the

border unless IPASy belongs to an IXP, which we then consider as

the border. We identify IP addresses that belong to the same router

by performing alias resolution using MIDAR [47]. By combining

the output of border mapping and alias resolution, we represent

each traceroute at the granularity of a border router path.

Handling unresponsive traceroute hops. When comparing trace-

routes, we want to avoid identifying measurement errors as route

changes. For each unresponsive hop (⋆) with responsive hops on

both sides, we check whether we only ever observe a single respon-

sive hop matching that triple. If so, we patch the unresponsive hop.

We treat any remaining unresponsive hops as wildcards that cannot

indicate a change.

IP geolocation approach. We use three techniques to geolocate IP

addresses. First, we use IPMap [13], which combines the results of

multiple geolocation approaches. IPMap has been found to be 99.5%

accurate for country-level geolocation [39] and 80.3% accurate at

the city-level, better than commercial databases [23]. When IPMap

is not able to geolocate an IP interface, we run a custom shortest-

ping measurement, which we describe next. If that does not work,

we rely on a city-level implementation of the CFS algorithm [32].

If an IP address cannot be geolocated with one of these techniques,

we do not consider path segments starting or ending with that IP

address as part of PoP-level staleness inference signals (§4.2.2).

Our implementation of shortest-ping geolocation follows an ap-

proach similar to IPMap. To derive candidate locations for a target

IP ι, we first map ι to an AS, then look up the complete list of (facil-

ity, city) locations for that AS, if it exists in PeeringDB. If we can

decode a location hint from a reverse DNS lookup of ι, we filter
the list to only candidates that match the hint. We extract geoloca-

tion hints encoded in DNS names using CAIDA DDec [11], which

combines DNS decoding rules from undns [71] and DRoP [36]. For

each candidate (facility, city), we identify any available RIPE Atlas

vantage point or Looking Glass server that is within 40km of that

city and in an AS that either has a presence in that facility or is in

the customer cone [49] of an AS that is in the facility. ASes in the

same facility as ι’s AS may interconnect there with ι, yielding the
vantage point a short path to that AS. We then sort vantage points

Figure 12: Validation of our geolocation technique by com-

paring to three databases.

according to the following preferences. Vantage points in ASes with

presence in the facilities are preferred over ASes that are only in the

customer cones. Of those at the facilities, vantage points in ASes

with known relationships are preferred over those in ASes without

a known connection to ASι . The ones with known relationships are

ordered according to their inter-AS relationship with ASι , following

the same ordering as Local Preference values. Vantage points in

ASes Vantage point ASes that have ASι as a customer are the most

preferred, while vantage point ASes that use ASι as transit provider

are the least preferred. We use this preference order to increase

the chances of getting a direct path between the vantage point and

ι. If multiple vantage points are equally preferred, we pick one at

random. Starting from the most preferred vantage point, we issue

three pings to ι. If the measured round-trip latency is at most 1ms

(maximum distance of 100km based on the speed of light in fiber),

we declare ι to be in the vantage point’s city. Otherwise we repeat

the same process from the next most preferred vantage point.

IP geolocation validation. We validated our ping-based technique

in 2017, on a set of traceroutes issued daily in May 2016 from

30 Ark monitors to the x .1 address in 360K /24 prefixes.
6
We

discarded traceroutes that either contained IP-level cycles or did

not reach the destination. For our analysis, we use the 72% of

⟨source, destination⟩ pairs for which we are left with a traceroute

for every day of our measurement period.

Our ping-based technique was able to locate 82% of the border

router IP addresses seen in these traceroutes, in each case finding a

vantage point with a ping time of 1ms or less to the IP address. We

could not locate 10% of IP addresses because they did not respond to

pings, and 8% were responsive but we were unable to find a vantage

point within 1ms. Our technique probed each IP address from an

average of 8.3 vantage points, using 3 ping packets per vantage

point, indicating that our PeeringDB-driven search enabled efficient

identification of probing vantage points to realize a reasonable

probing overhead.

To validate our ping-based technique, we compared its geoloca-

tion estimates of 14,720 IP addresses to three geolocation databases.

The first is a crowd-sourced router geolocation dataset containing

6
We used this dataset when we were developing our staleness prediction signal tech-
niques but only use it as a source of IP addresses to validate our geolocation technique

in this paper. For the rest of the paper, we run the technique we validate here on IP

addresses from the new traceroute data described in the relevant sections.
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approximately 35K submissions from network operators and col-

lected by the RIPE OpenIP Map project [1]. We use a snapshot taken

on 2017-06-05 and restrict our analysis to the 1319 IP addresses

that contain latitude and longitude data and overlap with our data.

Because this data is submitted by operators about networks they

maintain, it should be highly accurate. To provide broader coverage,

we also use two commercial geolocation databases, one a router-

specific dataset from a well-known Internet performance firm and

the other a popular, general purpose, dataset from a different ven-

dor. Our data set had an overlap of 5,872 IP addresses with the

router-specific database and had all IP addresses covered by the

general purpose database.

Figure 12 depicts the difference in our geolocations and those of

the databases for the set of common IP addresses. Our geolocation

performs very well according to the crowd-sourced dataset, with

93% of our geolocations exactly matching, 96% < 100km and 98%

< 500km. Compared with the locations from the router-specific

database, our technique also performed well, with 75% of our geolo-

cations exactly matching and 90% < 500km. The general purpose

database shows the highest level of geolocation error, with only 60%

matching exactly and 82% < 500km. In cases where our technique

produces a different location than a database, it is hard to know

which is correct. By the speed of light, a responsive address must be

within 100km of a vantage point with a 1ms RTT, and so our tech-

nique can only have error greater than 100km if we have the wrong

geolocation for a vantage point or if a different device responds

to a ping on behalf of the border IP address (perhaps a middlebox

or if the address is reused in different locations). Given the high

similarity between our locations and those of the crowd-sourced

database, which we consider to be the most definitive, we do not

investigate the cause of this discrepancy further in this paper.

Use of active measurements. The services we use for IP alias iden-

tification and IP geolocation use active measurements. However,

the measurement cost is low relative to the benefit we get by iden-

tifying corpus traceroutes that are unlikely to have changed and

hence need not be reissued. First, geolocation and alias information

changes on a much slower timescale than routes, and so the mea-

surements do not need to be refreshed frequently. Second, we use

existing services that provide the data and may already have issued

the measurements. Third, the alias identification uses Ark, which is

much less resource-constrained than platforms such as RIPE Atlas.

Fourth, the measurements require only ping measurements, which

incur significantly less probing overhead than traceroutes.

B EVALUATION OF TUNING PRECISION OF

BGP COMMUNITY SIGNALS

While all our techniques are subject to calibration (§4.3.1), for most

techniques, the purpose of calibration is to discover which corpus

vantage points correlate with which public data sources. With com-

munities, there is an additional challenge of also needing to learn

which communities indicate where the route goes versus being un-

related to path changes entirely (not just unrelated to path changes

in the corpus). This section demonstrates that our calibration can

prune out unrelated communities, allowing a long-running system

employing our methodology to achieve higher precision as time

goes on. Figure 6a shows that precision of change identification

Figure 13: The number of BGP communities that generate

false-positive signals decreases over time as our techniques

identify and prune communities that are not related to path

changes.

starts at a reasonable 60%, but improves significantly over time as

each technique gets calibrated. Here we characterize the automated

learning of BGP communities related to path changes.

Figure 13 shows the number of communities that generate false-

positive signals each day, i.e., the number of BGP communities that

generated signals and had overlapping traceroutes that allowed

us to determine that the community change did not indicate a

path change. We see that over time the number of communities

that generate false-positive signals decreases, as our techniques

automatically prune communities that are not related to location

or routing changes. We note that this approach may also be used

to infer which BGP communities are used to signal geographical or

topological information about routes.

C EXPLAINING HIGH COVERAGE

Figure 6b shows the coverage of our techniques remain high through-

out the 60-day retrospective evaluation, with coverage being above

90% for paths public data can monitor. The high coverage is par-

tially explained by overlapping paths between data sources and

the traceroute corpus, as well as routing events impacting multiple

paths and being visible on multiple traceroutes.

We find that 266 BGP VPs are located in 164 ASes that also host

Atlas Probes, covering 720 (16%) of the Probes in Pcorpus (§5.1.1).
This large overlap follows from RIPE Atlas’s large footprint and pos-

sibly from research-friendly networks hosting RIPE Atlas Probes

and peering with BGP route collectors. This overlap provides good

alignment between BGP feeds and public traceroutes (in our evalu-

ation and in real systems/studies using RIPE Atlas). Moreover, due

to the large number and distribution of RIPE Atlas Probes, the sets

P
public

and Pcorpus of VPs have extensive overlap in terms of ASes

and geographical locations. In particular, 2,931 (67%) of the Probes

in P
public

and 2,976 (67%) of the Probes in Pcorpus are colocated in

658 ASes, while 1,925 Probes are located within 50km of another

Probe from the other set. This setting is appropriate for evalua-

tion because we intend our techniques to enable more efficient use

(and re-use) of RIPE Atlas traceroutes, so the overlap in practice

will be even higher (because we partition by source Probes and by

destinations).
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Figure 14: Distribution across border router IPs of the num-

ber of AS pairs that use the same border IP. This overlap

allows us to correlate changes observed in one public trace-

route to other traceroutes in the corpus.

Figure 15: Distribution of the number of paths in our public

traceroute feed for each border IP. Only 40% of all the border

IPs are visible in 10 ormore paths, but over 80% of the border

IPs that are part of path changes are covered by at least 10

paths.

Finally, there is also significant overlap across public traceroutes

and the traceroute corpus. Figure 14 shows the distribution, across

all IP addresses at the border between two adjacent ASes in the

traceroute corpus (border IPs), of the number of adjacent AS pairs

that use that border IP. We observe border IPs are used by a large

number of AS pairs; about 60% of the border IPs are used by more

than 10 AS pairs, while 40% are used by more than 30 AS pairs.

This is likely the case for border IPs assigned to routers at IXPs and

colocation facilities. This diversity implies that our techniques can

correlate measurements from different sources to identify changes.

Figure 15 shows that border IPs involved in path changes tend to

appear in more paths than border IPs that are not involved in any

change. This property makes changes easier to observe, as routers

with changes are covered in more paths, and helps achieve high

coverage, as changes in these high-centrality routers impact (and

trigger signals of changes for) a higher number of paths.

This result bodes well for real use of our approaches, as RIPE

Atlas is both the largest set of public traceroutes to crawl for signals

and an ideal use case for our techniques, as studies using it are

severally constrained in their measurement budgets.

D INTEGRATIONWITH IPLANE

We evaluate the impact of our techniques on iPlane [50], a service
that predicts unmeasured routes by splicing segments of already

measured traceroutes and that also serves as a prediction service

for Sibyl [18]. To briefly explain how iPlane works, suppose iPlane
needs to predict the path between a source s and a destination d .
iPlane will search its corpus of measured traceroutes to find two

traceroutes (s,d ′) and (s ′,d) that intersect at an intermediate PoP

p, and will assume that the path (s,p,d) approximates the actual

path between s and d . iPlane can benefit from accumulating a

large number of archived traceroutes, since it is more likely to find

traceroutes that can be spliced. On the other hand, staleness can

lead to incorrect predictions, as paths that intersect in the corpus

may no longer intersect in practice.

Traceroute corpus. To implement iPlane’s methodology, we first

construct the initial corpus by collecting one day (2019-03-01) of

traceroutes from RIPE Atlas’s anchoring measurements (as in §5.1)

which results in 497, 076 different paths. We use the anchoring mea-

surements because they are repeated every 900 seconds between

the same set of Atlas Probes and destinations (Atlas Anchors), al-

lowing us to compute the staleness of the traceroute corpus over

time.

For the initial corpus of traceroutes, we first group the IP ad-

dresses to PoPs, by mapping each address to an ⟨AS, city⟩ tuple
using RIPE’s IPMap for geolocation [23]. If we cannot geolocate

an IP address, we consider it as its own PoP. In total, we were

able to geolocate 31% of the 144, 220 public IPs in our dataset. We

then maintain the paths that go through each PoP, and identify

spliced paths of the form (s,p,d) where a traceroute from s to some

destination intersects at p with a traceroute from some source to d .

Tracking changes. To understand the impact of staleness in iPlane’s
ability to correctly splice traceroutes, we maintain two parallel ver-

sions of iPlane and its traceroute corpus. One retains the initial set

of anchoring measurements. For the other, we remove traceroutes

that our staleness signals suggest are out-of-date from iPlane’s
corpus, and we re-add them if our signals later suggest they are

valid again (i.e., changed back to the original route) (§4.3.2).

Results. For each day in the evaluation period, we apply iPlane’s
methodology to generate spliced paths from each RIPE Atlas Probe

to every Anchor that the Probe did not issue traceroutes to in the

anchoring measurements. For each day, Figure 16a depicts what

fraction of spliced paths are invalid because one or more of the

paths has changed, causing the paths to no longer intersect. If iPlane
simply relies on its initial corpus, over half of its spliced paths are

invalid by the end of the measurement period. With our techniques,

the fraction stale rarely rises above 20%, and it is below 10% at the

end of the two month period. Importantly, Figure 16b shows that

we are still able to retain the vast majority of valid spliced paths

when pruning traceroutes flagged by our signals.

This result has two implications. First, iPlane can rely on our

techniques to help prune out stale traceroutes. Second, our tech-

niques let iPlane rely even on resource constrained vantage points

such as RIPE Atlas, because our techniques lend confidence as to

which traceroutes can be kept around for long periods of time.

While our evaluation is over a small set of destinations, this ability
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(a) Out of iPlane’s initial spliced paths, fraction that are incorrect

(stale) without using staleness prediction (not pruned) and when our

staleness inference techniques are used (pruned).

(b) Fraction of valid spliced paths iPlane retained (not rejected as

stale) when using our signals.

Figure 16: Evaluation of benefit of using our staleness prediction signal techniques to prune stale traceroute from iPlane corpus.
Our techniques limit the fraction of staled paths over time (Figure 16a) without pruning out a significant fraction of valid

paths (Figure 16b).

to identify traceroutes that remain stable is very helpful for a sys-

tem like iPlane that wants to consider the full set of hundreds of

thousands of routable Internet prefixes.
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