Rewarding Relays for Decentralised NAT Traversal
Using Smart Contracts

Navin V. Keizer
University College London
navin.keizer.15@ucl.ac.uk

Onur Ascigil
University College London
o.ascigil@ucl.ac.uk

ABSTRACT

Traversing NAT’s remains a big issue in P2P networks, and many of
the previously proposed solutions are incompatible with truly de-
centralised emerging applications. Such applications need a decen-
tralised NAT traversal solution without trusted centralised servers.
In this paper we present a decentralised, relay-based NAT traver-
sal system, where any reachable node is able to assist an unreachable
node in NAT traversal. Smart contracts on the Ethereum blockchain
are used to ensure fair rewards. Besides financial incentives, a rep-
utation system based on transactions on-chain is used to mitigate
against malicious behaviour, and guide peer discovery.
Evaluation of our system shows that a combination of historic
performance metrics leads to an optimal scoring function, that the
system takes little time to reach stability from inception, and that
the system is resilient against various attacks. Implementation of the
smart contract shows that the cost for participants is manageable.

CCS CONCEPTS

+ Networks — Peer-to-peer networks; » Security and privacy —
Distributed systems security.

KEYWORDS

Network Address Translator, Smart Contracts, Network Relays

1 INTRODUCTION

Peer-to-peer (P2P) networks have been popular in the design of
various applications such as BitTorrent and Napster due to their
decentralised nature and associated benefits. Recently there has
been a new surge to decentralise the Internet through P2P-based
systems such as distributed file systems (IPFS) [1] and cryptocurren-
cies (Bitcoin, Ethereum) [14, 21]. There are, however, a number of
challenges and issues in P2P networking, mainly due to the incom-
patibility with the current Internet infrastructure which is tailored
towards the client-server model.

One of the most prominent is the issue of unreachable peers,
which can be caused by Network Address Translators (NAT), fire-
walls, reverse proxies and more (from here on simplified as just
NAT’s). In a P2P network, a node must be able to act as a client and
a server at the same time. However, NAT’s make it impossible to
receive requests from the network if the node itself has not previ-
ously set up a connection with the other node. Estimations in the
Bitcoin and IPFS networks suggest that respectively at least 86.8%
and 52.2% of nodes are behind a NAT [6, 20].

Early research in P2P networks [3, 18, 19] produced a number
of protocols such as STUN, TURN and hole punching, aimed to fix
this problem. A large suite of protocols originated due to the lack

University College London,

Ioannis Psaras George Pavlou
University College London
Protocol Labs george.pavlou@ucl.ac.uk

i.psaras@ucl.ac.uk

of standardisation in NAT’s, making protocols only suitable for a
subset of NAT’s. For example, early research showed hole punching
to be successful 60% for TCP and 80% for UDP [19], leaving relay-
based protocols as the only reliable option.

One of the main issues with the previously proposed solutions
is the need for a set of centralised servers assisting the network by
relaying messages or maintaining connections with various nodes.
These servers are prone to numerous attacks [18], require complete
trust in the central infrastructure, and can be situated far from the
node using its services, thus incurring high latencies.

For many latency-sensitive applications, such as P2P video calls,
P2P live video streaming (such as in P2P gaming), and blockchain
based computation offloading for latency sensitive tasks [17], this
would cause significant performance degradation.

In this paper, we propose a decentralised, relay-based NAT tra-
versal system for P2P networks with a built-in reward system for
relays who assist nodes in their communication. In this system,
any reachable node in the P2P network can become a relay, which
requires incentivisation of honest behaviour and stronger security
measures, as these nodes are untrusted and potentially malicious.
Our system is realised by a combination of i) dual-path routing,
producing a Proof of Timely Relay (Section 4.1), which ensures a
client of honest behaviour of relay nodes, and ii) smart contracts
(Section 4.2) on the Ethereum blockchain, which ensure fair ex-
change for the work done by relays. Nodes are incentivised to
behave properly in order to claim maximum rewards.

A reputation system (Section 4.3) is incorporated on the blockchain
to protect nodes from potential malicious nodes, and increase the
chance of being used as a relay when behaving properly. Our repu-
tation scoring policy is determined locally based on historical trans-
actions on the blockchain, and assists in the peer discovery process
(Section 4.4). Our evaluation (Section 5) explores different reputa-
tion scoring policies and their ability to avoid contracting malicious
relays, and shows that the reputation system is able to quickly
stabilise from inception. We finally look at the cost overhead and
performance of the smart contract implementation.

2 BACKGROUND

In this section we review the general concepts of NAT traversal,
blockchains, and smart contracts.

2.1 NAT Traversal

NAT’s perform both port and address translation at the boundaries
of public and private networks, enabling a much larger number of
nodes in a private network to be connected to the public Internet.
In general, there are two cases when NAT’s create issues in P2P
network communication between two nodes: i) both nodes are

unreachable (behind a NAT), and ii) only one of the two nodes is
unreachable. In the first case, connection in both ways will fail,
whereas in the second case only the connection from the public
node to the unreachable node will fail. We refer to [3, 18, 19] for
further discussion of these issues.

Many protocols have been proposed to aid in NAT traversal
(due to the lack of standardisation in NAT’s), mostly based on
centralised servers. Out of these, TURN relays entire connections
for case i), with high reliability but low relative performance. For
case ii), connection reversal is used to relay the initial connection
after which a direct connection is set up between nodes. These
centralised approaches suffer however from a number of associated
issues. Besides the well studied security issues [18], they do not suit
decentralised P2P networks, as they require central management
and infrastructure. We argue that this is at odds with the aims of a
truly open and decentralised network, as no entity in the network
should have higher privileges than others, and raises the question
who would pay and manage the infrastructure.

Libp2p [10] has proposed decentralised versions of STUN and
TURN, where any node in the network can replace the centralised
server to help discover public addresses and relay connections.
This approach, however, lacks peer discovery, bootstrapping, and
required security measures (required since nodes are intrinsically
untrusted and relays can easily launch an attack).

2.2 Blockchain and Smart Contracts

In a blockchain network, itself a P2P network, nodes have a full
view of the shared history (i.e. the chain of blocks of transactions).
This chain is append-only, which avoids double spending. The so
called “full nodes” can send and verify transactions in the network,
and perform a computational puzzle in order to produce (mine) the
next block, for which they are rewarded.

One useful extension of blockchains are smart contracts, which
are scripts of code stored on the blockchain and are executable by
nodes. In Ethereum, a contract can be defined by users in the Turing
complete Solidity language and can be deployed on the blockchain
by compiling to the Ethereum Virtual Machine, after which it is
added to the chain under its own address, which is callable by nodes.
Executing functions defined in the smart contract has an associated
gas cost, which is proportional to the added load on the network.
Gas is paid in Ether, the cryptocurrency used in Ethereum, and
the amount depends on the time constraints of the transaction.
Read-only contract calls do not incur additional costs.

In order to write scalable and user friendly smart contracts, the
function calls need to be kept to a minimum, as they result in gas
costs. For this reason off-chain payment channels with incremental
micro-payments can be used, where users submit a deposit and
send incremental payment receipts, which the receiver can retrieve
in one go, thus only incurring a single transaction fee.

2.3 Related Work

Existing work has proposed incentives for relaying network traf-
fic with rewards. Ghosh et al. [4] propose the use of TorCoins to
reward users offering bandwidth for relaying of TOR connections.
Goyal et al. [5] introduce a system for decentralised content deliv-
ery incorporating secure incentivisation in P2P networks. Content

N. V. Keizer et al.

providers start smart contracts for a file they want to distribute,
and pay relay peers for content delivery. Norton and Simanavicius
[16] propose a smart contract based segment routing WAN sys-
tem, where users provide or consume spare bandwidth, forming a
network of segment routers, used to find less congested network
paths. Our work is distinct from these as we reward based on QoS
measured, incorporate a reputation system to prevent contracting
malicious peers, and use smart contract micro-payments.

There has been plenty of work on decentralised reputation sys-
tems in the past [7, 8, 12]. Closer to our work, Dennis and Owenson
[2] propose a blockchain-based reputation system, where clients
locally enforce scoring policies. We extend this with the use of
smart contracts and explore local scoring functions.

3 THREAT MODEL AND ASSUMPTIONS

We assume that a P2P network comprises two sets: reachable and
unreachable nodes. Reachable nodes can be relays, while unreach-
able nodes need a relay to participate in the network. Reachable
nodes are able to function as a client and a server simultaneously.

In this system, unreachable nodes can use reachable nodes as
their relays. Both are assumed to be potentially malicious actors,
but rational. A malicious actor is one who may exploit the sys-
tem for monetary gain and information, but also a node which
oversubscribes its limited (bandwidth) resources and is thus un-
able to provide the good service promised. We assume the latter
to be more common, as there are no direct financial incentives for
launching an attack, but there are for serving more nodes as a relay
(oversubscription attack).

Because relays and their clients mutually distrust one another,
we use smart contracts deployed on a blockchain to function as a
trusted, mediating third-party. One drawback of our approach is
the requirement of network synchrony (i.e. constant blockchain
monitoring), for example to avoid a timeout event as an honest
node (Section 4.2). We make a simplifying assumption that all nodes
have a stable connection to the Ethereum blockchain (based on
previous relays or as light nodes), and that in the majority of cases
the network is resilient and additional latencies in communications
due to network-related events are rare.

Our system aims to present a secure decentralised NAT traversal
mechanism for P2P networks, where malicious attacks are irrational
and malicious nodes are easily identified, while ensuring honest
nodes a fair exchange of rewards for their resource usage. These
goals are achieved through incorporating the following:

e Financial incentives through smart contracts to stimulate
good behaviour and mitigate against malicious attacks.

e Reputation system on-chain to identify potential malicious
nodes and predict the performance of a node.

e Peer discovery based on nearby nodes and their reputation
score (computed locally from on-chain transaction history).

Besides security, the system should have an increased perfor-
mance in the best case (when an honest nearby node is contracted)
over centralised solutions. The system and smart contract should
not add significant overhead (processing, network traffic, and cost)
compared to the centralised solution either.

Rewarding Relays for Decentralised NAT Traversal

P2P Network ﬁi‘
< A
O 2. Send hash of data H(D) and oy
/—\\\ timestamp of transmission t0 Blockehain h.
S o O '
- e 6. Terminate -
S S e [G [E]
~ | T TR send funds ®
— = ~[Smart Contract 4
| vl
T P Client 4. Submit trust
- score and
1. Send data D, encrypted Relay Enc(pkC D)

ayment receipt
with clients public key pay ip

s

3

Relay peer

3. Check payment
is consistent with

own view of QoS

Figure 1: Proof of Timely Relay,
data D is sent to the client.

4 SYSTEM DESIGN

The goals mentioned in Section 3 are reached through a combina-
tion of Proof of Timely Relay (PoTR), which guarantees the unreach-
able node that data has been relayed correctly and timely, and a
smart contract which governs the rewards, ensures fair exchange,
and implements a reputation system through mutual scoring.

When a client node contracts a number of relays to help become
reachable in the network, an agreement is stored on the smart
contract. Depending on the situation, the relay node either uses
connection reversal (in the case the node dialling the unreachable
node is reachable in the network) or sets up a circuit relay if both
parties are unreachable. We focus on the latter since it has a higher
reliability, and since we have no prior knowledge of network topol-
ogy should assume the worst case. The mechanism is similar to
that in the centralised case, but instead of using the central server,
the relay node acts as the intermediary.

4.1 Proof of Timely Relay

PoTR, as shown in figure 1, is the mechanism through which a client
can detect potential malicious behaviour by the relay. It allows the
client, when communicating with another node, to verify that the
data has been relayed without additional delay, data being altered,
and a large packet drop rate, as promised in the contract.

In order for the client node ¢ to verify this, they pick two relay
nodes in the P2P network: one as a check node (R;) and one as
the “true” relay node (R,). Ry acts as a standard relay, where a
peer p (who is communicating with ¢) would send its data to R,
(possibly using end-to-end encryption to prevent tampering) which
the relay node R, in turn forwards it to c. At the same time, the
peer p sends a hash of the data chunk and timestamp of the start
of transmission to the check node R, which in turn forwards it to

c. This information then allows c to assess the performance of R,.

Our simple PoTR mechanism can easily be extended, for example
by sending a percentage of the data bits through R, as a small

conceptual difference. We leave further exploration to future work.

c and R, both keep a record of their view of R,’s performance
in their local performance log, based on PoTR for ¢ and based on
forwarding delays and approximate network delays for R,. Every
evaluation interval (Section 4.2), both parties calculate the average
performance over the interval they perceive and use this to settle
cryptocurrency payments.

5. Submit trust score

2

Figure 2: Relay operation and
smart contract termination.

1. Compute reputation scores of potential
2. Send relay nodes
payment-
channel

update

L
T
'-| 1 [2. Contact
Blockchain ! t
.

client trustworth

Clent »

1. Send
1 PoTR per
packet

Check peer Smart Contract
Relay Peer Relay Peer
3. Calculate client trust score,

serve if trustworthy

P2P Network P2P Network

Figure 3: Peer discovery based on on-
chain transactions.

4.2 Smart Contract

A smart contract is used to document the agreement between clients
and relays on the blockchain, and govern payments by ¢ for the ser-
vices provided by R, without the need of a trusted third party. The
smart contract allows for conditional payments based on the QoS
provided by Ry, and uses micro-payments, ensuring fair exchange.

Our smart contract is implemented in Solidity and deployed on
the Ethereum blockchain. When a client starts a new agreement
with a relay, it submits the following negotiated parameters to the
blockchain:

(1) Minimum QoS promise, as any statistic of: i) latency, ii)
packet drop rate, iii) throughput

(2) Evaluation interval time

(3) Deposit

(4) Payment rate function parameters

(5) Timeout duration

The minimum QoS promise is the lowest QoS score that is ac-
ceptable for ¢ for which it’s willing to reward R,. The QoS score
is based on performance metrics such as latency, drop rate, and
throughput. We envision this composition to be different for differ-
ent applications, and leave the implementation to their developers.

The evaluation interval represents the time interval when ¢ looks
into its performance log and compares the interval’s performance to
what was promised (minimum) by Ry If the observed performance
is insufficient, ¢ can terminate the agreement. Otherwise, ¢ sends
a signed payment update to R,, according to the observed perfor-
mance and the payment rate function (described below). A longer
interval avoids the overhead of calculating metrics frequently, but
this presents a trade-off with security as smaller intervals allow
malicious behaviour on either side to be identified early.

Upon receiving the payment update, R, compares this to what it
expects (based on its own observed performance) to check that ¢
is not underpaying. If it notices malicious behaviour from ¢ or has
other reasons to terminate the agreement (such as oversubscription)
it can close the payment channel any time by submitting the latest
signed payment update to the smart contract and triggering the
termination process.

The termination process can be triggered by c or R, to end the
agreement and settle the payment. First, the node sends a termina-
tion message to the other, submits a trust score to the smart contract
based on the perceived trustworthiness of the other node (explained
in Section 4.3) and in the case of R, also the payment receipt. Next,
the other node submits the trust score they observed to the contract
(and payment receipt if R,), after which the payment is made to R,

and the rest of the deposit is returned to c. The smart contract will
only pay the funds when both trust scores have been received, and
thus incentivises a terminating node to notify the other node, and
incentivises both nodes to participate in the scoring. If one node
becomes unresponsive and holds the other node hostage, a timeout
event can be called (if the duration has expired) to settle the calling
node’s payment and automatically assign a negative trust score to
the unresponsive node.

A client submits a deposit which will act as their relay credit,
forming a pay-as-you-go structure. The deposit will set the duration
of the contract, based on the maximum payment rate. A contract
can be extended by additional deposits.

The payment rate function is the final parameter negotiated be-
tween ¢ and Ry, and describes the payment rate for different levels
of performance (QoS score). This incentivises R, to perform better
to receive a higher payment, and should be chosen to deter over-
subscription attacks. For this, we propose a negative exponential
function, but due to space limitations we leave the further details
of the payment rate functions for the future work.

4.3 Reputation System

The smart contract records the trust scores given to nodes involved
in the contract for each agreement. This makes for an open, de-
centralised and node-centric reputation system, as the blockchain
is open and anyone can query the blockchain to get the previous
transaction data, including the negotiated parameters (listed in Sec-
tion 4.2) and the trust scores. Nodes can locally decide their own
policy for calculating reputation scores of nodes in the network.
This can be a pure indication of trust scores assigned in history, or
go further and incorporate metrics such as contract duration and
performance in terms of QoS scores. They can also opt to use public
information only, or combine it with private information based on
its own previous agreements.

The trust scores given to each node are either positive (i.e. 1), or
negative (i.e. 0). We avoid re-join attacks by setting negative scores
to 0. This way, malicious nodes will not gain from rejoining the
network after receiving a negative score, as they will still start at 0
(the same as before).

4.4 Peer Discovery

In order for an unreachable client to discover potential relays, both
the reputation of nodes and the expected performance are impor-
tant. The reason we don’t want malicious nodes to start with—even
though they can easily be picked out in operation through PoTR
and eliminated through the smart contract—is that they may still
damage honest nodes. First, the time spent initiating a contract,
waiting for an evaluation interval, and terminating a contract will
delay the transmissions of files in the network and will reduce the
overall QoS. Second, instantiating the smart contract and subse-
quent functions on it requires gas, which is paid in Ether, leading
to a monetary loss. Last, packets might be lost due to the confusion,
and this may affect the clients perceived trust by the network.

Contracting R, with close proximity to ¢ will likely lead to a
better expected performance. Furthermore, the R would need to
be close to ensure timely delivery of the PoTR. For this reason, peer
discovery is proposed as follows.

N. V. Keizer et al.

First, ¢ finds nodes providing relaying services nearby. There
are various proposed ways this can be done, such as flooding the
network and waiting for the first response, registering nodes at
servers based on location, and using application level anycast [13].
Further details of this is left for future work. After obtaining the set
of nearby nodes, ¢ calculates their reputation scores, in order to filter
out potential malicious nodes. Calculating only the scores of these
nodes rather than all nodes in the network increases performance
and decreases overhead.

Next, the top node N is contacted with a relay request, after
which N locally calculates c’s score to ensure it isn’t malicious. If
accepted, ¢ submits all negotiated parameters to the smart contract,
and if correct, N starts serving as R,. We intend to extend this
simple mechanism in future work.

5 EVALUATION

In this section we evaluate different aspects of the system by run-
ning various simulations, and show how our system meets the
design goals outlined in Section 3.

5.1 Peer Discovery and Reputation System

In order to evaluate the performance of peer discovery using repu-
tation metrics we used the PeerSim P2P simulator [11]. We created
a network of 100,000 nodes, all with an ID and boolean variable
to indicate maliciousness, thereby dividing the network into a set
of malicious and honest, with all nodes acting both as a client and
relay. We then generate historic transaction data on the blockchain
for all nodes (number of previous transactions, trust, duration, and
QoS scores) based on a Zipf distribution with different exponents
for malicious and honest nodes.

We assume that most malicious nodes will start with a low num-
ber of historical transactions, because increase in usage would lead
nodes to be more invested in the system due to built up reputation.
A minority of malicious nodes will have a larger number of historic
transactions (such as oversubscribed honest nodes), and we model
this by setting the number of transactions using a higher exponent
Zipf distribution for malicious nodes compared to honest nodes.

Every simulation cycle, each node randomly connects to k nodes
(representing nearby nodes), performs a scoring function on their
data, and chooses the best relay. A range of different scoring func-
tions and parameters was tested in the simulation, beginning with
scoring based only on the trust, QoS, or duration metrics. We also
evaluate functions combining these metrics. For the rest of the
simulation we set k to 5.

First, we measure the effectiveness of the different types of scor-
ing policies made by the local nodes. Figure 4 shows the perfor-
mance in terms of malicious node pick ratio MNPR (ratio of mali-
cious nodes picked as a relay to the total nodes picked) for different
malicious percentages in the network. The duration based and pa-
rameters combined scoring functions perform the best, followed by
the trust based, QoS based, and random picking. Adjusting the ratios
of the combined function we find a 1:4:5 ratio of QoS:trust:duration
outperforms all strategies.

Next, we assess the impact of the number of historic transactions
used in scoring. Figure 5 shows that, for the combined function,
MNPR improves with a higher number of transactions used. There

Rewarding Relays for Decentralised NAT Traversal

0 — 018
5ol [F=—random ey
o —=—trust based e .
2 duration based o L
S 08 S5
ag ——qos based / aFou
£ 807|. [combined metrics / g 25
28 P g 2 F o
a2 , a8
T %0s // I3
2 < =201
= / =1
g 8os g " 38 |
£2 p / 3 o0
-4 / / a3
050 P o o g
§2 S 28 o0
83, o g€
£ e of @ 8
3% / 3 Poosflt
S o2 o ~ 55 ||
s e P Y
= o e E R -
+ B o020

— —3
e oo

——10%
——20%
30%

:’ ! W
1 / |2

| i |

| b

|

—&— Percentage malicious nodes picked

—+— Percentage honest nodes picked
Percentage of nodes with above average service

Percentage of peers malicious / honest / good service
as part of network of 100000 nodes with 40% malicious

0w w 4w % @ w0 e w10 o
Malicious percentage of the network (%)

Figure 4: Malicious node pick ratio for
different scoring functions (against
malicious percentage in network)

is however a trade-off in performance and precision to be consid-
ered, as for more than about 10-20 transactions used, the MNPR
starts increasing again. This is due to the loss of accuracy of current
behaviour as we average over a longer period.

Finally, we evaluate the time for the system to stabilise from
inception. In order for our reputation system to work well in re-
ducing MNPR transactions are needed on chain to indicate nodes
ability to provide good service. However, at system inception all
nodes start without any transaction data available and therefore
we expect some delay in convergence to a stable reputation system.
We require this period to be as small as possible, as users might
be discouraged from using the system due to lower guarantees of
avoiding malicious nodes.

For this simulation, we start with all nodes without any data,
and have all choose the best relay out of their neighbours (based
on the information available to them). Every simulation cycle, the
picked relay is scored (based on malicious or honest) and is kept
for the next cycle if their score is above average (set so all metrics
are above 50%). If service was below satisfactory, the node chooses
another neighbour as a relay. Nodes remember an unsatisfactory
relay for one round. This avoids re-picking malicious nodes, but al-
lows previously malicious nodes to recover and redeem themselves.
We also redistribute the maliciousness of nodes at cycle 20 and 40,
to observe if our system is able to quickly adapt and recover.

Figure 6 shows how our reputation system is able to stabilise
quickly, and within 5 cycles reach a MNPR of under 10%. Further-
more, after some malicious and honest nodes switch at cycle 20 and
40, the system is able to stabilise within 10 cycles to slightly above
the previous MNPR.

5.2 Security Analysis

We now evaluate the security of our proposed system and discuss
how it mitigates against various attacks.

We first consider the situation when both ¢ and R, behave hon-
estly, but due to network events, such as failures, the service pro-
vided is inadequate, leading to both nodes scoring negatively. Al-
though this adversely impacts honest nodes, we assume that such
network-level failure events will happen infrequently, and therefore
this will not impact the overall trust score of a node significantly.
Furthermore, our proposed combined metric scoring uses more met-
rics besides trust. In the negotiation phase, setting a low minimum

50 50
Number of previous transactions used Cycle

Figure 5: Malicious node pick ratio for
different number of transactions used
in 1:4:5 combined scoring

100 150) 0 20 a0 4

Figure 6: Stabilisation time from in-
ception and after redistributing mali-
ciousness at cycle 20 and 40

service requirement also ensures that temporal network congestion
does not immediately lead to contract termination, allowing R, to
recover and provide better service.

We next consider collude attacks between actors in the system.
When R, and c collude to try to boost scores with short forged
transactions, they will not be able to impact the overall score by
submitting trust scores, as the duration and QoS metrics will be
controlled by the smart contract. Attempting this attack would also
be expensive as every transaction on chain would incur costs. It
is easier and more financially attractive to boost scores by serving
nodes honestly, while earning rewards. Collision between R, and R,
to keep c in the dark is also irrational as relaying packets properly
would provide financial rewards, and sending dummy messages to
¢ to maximise rewards will be noticed if this traffic is not expected,
which makes this type of attack unfeasible as well.

Sybil attacks are largely ineffective as the attacker will have
finite bandwidth. All new nodes entering the network start with a
zero score, and will not be able to consistently serve as R, unless
they provide satisfactory service. Therefore, creating new identities
or rejoining the network with new identities has no benefit for
a malicious party. Using sybil identities to boost scores is also
mitigated against since collude attacks are ineffective.

The final type of attack we discuss is a dishonest scoring attack,
where nodes score dishonestly to lower competition in the network.
This attack stems from the absence of direct loss when scoring dis-
honestly. However, when a node is scored incorrectly, it can keep
the identity of the dishonest node in its log and avoid contracting
them in the future. This can be shared with other nodes, poten-
tially costing the malicious node future business. We leave further
exploration of this mechanism and trade-off for future work.

5.3 Smart Contract

To evaluate the smart contract performance and costs, we imple-
mented the code in Solidity and deploy it on our private virtual
blockchain on Ganache. We couple the Remix IDE to interact with
our accounts and functions. We obtain the costs associated with all
functions based on the gas used, calculated using the GWEI/GAS
estimates from the Ethereum Gas Station and taking the USD con-
version rate in April 2020. Transaction speeds have varying costs,
and should be used based on the time sensitivity of the function
(e.g. submitting before a timeout event requires higher speed).

N. V. Keizer et al.

Cost medium

Cost fast

0.0086923 ($1.33861)

0.0132123 ($2.03469)

0.0173846 ($2.67723)

0.0011565 ($0.1781)

0.0017578 ($0.2707)

0.0023129 ($0.35619)

0.0002422 ($0.0373)

0.0003681 ($0.05669)

0.0004844 ($0.0746)

0.0003949 ($0.06081)

0.0006002 ($0.09243)

0.0007898 ($0.12163)

0.0003114 ($0.04796)

0.0004733 ($0.07289)

0.0006228 ($0.09591)

0.0003259 ($0.05019)

0.0004953 ($0.07628)

0.0006517 ($0.10036)

0.0004799 ($0.0739)

0.0007294 ($0.11233)

0.0009597 ($0.14779)

0.0001711 ($0.02635)

Function Gas Cost Cost slow
deploy contract 1738464

start relay agreement 231292

terminate agreement client 48440

terminate agreement relay 78980

timeout 62281

submit trust score client 65173

submit trust score relay 95970

extend relay agreement 34219

0.0002601 ($0.04006)

0.0003422 ($0.0527)

Table 1: Smart contract costs per function, with different transaction speeds

From table 1, we conclude that client costs of a contract would
be around $0.40 - $0.60, and relay costs between $0.10 - $0.20. These
costs may become significant if called frequently, but this is not
expected as clients stay with a trusted relay over time.

Out of all contract functions, deployment is the most expensive.
This should happen rarely however, as all agreements are stored on
one contract. We envision contracts to be deployed per application
using relays and the cost to be paid by the application developer.

6 CONCLUSION AND FUTURE WORK

In this paper we have presented a reward system for decentralised
NAT traversal, where nodes are incentivised to be honest to earn
rewards. To ensure fair exchange, off-chain micro-payments and
a smart contract on Ethereum are used. Relays are rewarded pro-
portionally to their performance, and clients are protected from
malicious behaviour through a Proof of Timely Relay. A reputation
system is used to discover nearby honest nodes, based on historic
data on the blockchain, and nodes can enforce local scoring policies.
Our evaluation shows the performance of our reputation system
for different scoring policies with different parameters, yielding a
low malicious node pick ratio. Further, our reputation system is
able to reach stability within a couple cycles of inception, and reacts
well to nodes changing maliciousness. The costs of the interaction
with the smart contract are reasonable for both client and relay.
In future work, we intend to further define the payment rate
function and explore various system trade-offs, and extend our
system so clients set up a pool of relays, which can dynamically be
chosen for relaying, giving clients stronger guarantees of a backup if
nodes are busy. We also intent to extend our system to other general
application using relays such as decentralised content delivery.

ACKNOWLEDGMENTS

This work was partially supported by the EPSRC early career fel-
lowship In-Network Service Provisioning (INSP) under grant agree-
ment number EP/M003787/1.

REFERENCES

[1] Juan Benet. 2014. Ipfs-content addressed, versioned, p2p file system. (2014).
https://arxiv.org/abs/1407.3561

[2] Richard Dennis and Gareth Huw Owenson. 2016. Rep on the roll: a peer to peer
reputation system based on a rolling blockchain. International Journal for Digital
Society 7, 1 (1 3 2016), 1123-1134.

[3] Bryan Ford, Pyda Srisuresh, and Dan Kegel. 2005. Peer-to-Peer Communication
Across Network Address Translators. Proceedings of the Annual Conference on
USENIX Annual Technical Conference (2005).

[4] Mainak Ghosh, Miles Richardson, Brian Ford, and Rob Jansen. 2014. A TorPath to
TorCoin: Proof-of-Bandwidth Altcoins for Compensating Relays. 7th Workshop
on Hot Topics in Privacy Enhancing Technologies (HotPETs).

[5] Prateesh Goyal, Ravi Netravali, Mohammad Alizadeh, and Hari Balakrishnan.
2019. Secure Incentivization for Decentralized Content Delivery. In 2nd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 19). USENIX Association,
Renton, WA.

[6] Sebastian Henningsen, Martin Florian, Sebastian Rust, and Bjérn Scheuermann.

2020. Mapping the Interplanetary Filesystem. https://arxiv.org/pdf/2002.07747.
pdf

[7] Audun Jesang, Roslan Ismail, and Colin Boyd. 2007. A Survey of Trust and

Reputation Systems for Online Service Provision. Decis. Support Syst. 43, 2

(March 2007), 618—644.

Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. 2003. The

Eigentrust Algorithm for Reputation Management in P2P Networks. In Proceed-

ings of the 12th International Conference on World Wide Web. Association for

Computing Machinery, New York, NY, USA, 640-651.

Michal Krél and Ioannis Psaras. 2018. SPOC: Secure Payments for Outsourced

Computations. CoRR abs/1807.06462 (2018). http://arxiv.org/abs/1807.06462

Protocol Labs. 2020. libp2p: Concepts. https://docs.libp2p.io/concepts/

Alberto Montresor and Mark Jelasity. 2009. PeerSim: A Scalable P2P Simulator.

In Proc. of the 9th Int. Conference on Peer-to-Peer (P2P°09). Seattle, WA, 99-100.

[12] Tim Moreton and Andrew Twigg. 2003. Trading in Trust, Tokens, and Stamps.

In In Proc. of the First Workshop on Economics of Peer-to-Peer Systems.

Eleni Mykoniati, Lawrence Latif, Raul Landa, Ben Yang, Richard Clegg, David

Griffin, and Miguel Rio. 2009. Distributed Overlay Anycast Tables Using Space

Filling Curves. In Proceedings of the 28th IEEE International Conference on Com-

puter Communications Workshops, INFOCOM’09. 19-24.

[14] Satoshi Nakamoto. 2009. Bitcoin: A peer-to-peer electronic cash system. http:
//www.bitcoin.org/bitcoin.pdf

[15] Till Neudecker and Hannes Hartenstein. 2018. Network Layer Aspects of Per-
missionless Blockchains. IEEE Communications Surveys & Tutorials (09 2018).

[16] William B. Norton and Jonas Simanavicius. 2019. A Blockchain-backed Internet
Segment Routing WAN (SR-WAN).

[17] The Golem Project. 2016. Golem Whitepaper.
crowdfunding/Golemwhitepaper.pdf

[18] H. Schulzrinne, E. Marocco, and E. Ivov. 2010. Security Issues and Solutions in
Peer-to-Peer Systems for Realtime Communications. RFC 5765.

[19] P.Srisuresh, B. Ford, and D. Kegel. 2008. State of Peer-to-Peer (P2P) Communication
across Network Address Translators (NATs). RFC 5128.

[20] Liang Wang and Ivan Pustogarov. 2017. Towards Better Understanding of Bitcoin
Unreachable Peers. (2017). http://arxiv.org/abs/1709.06837

[21] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger.

8

[

— =
—_ o

ey
&

https://golem.network/

