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Abstract. Many prominent smart contract applications such as pay-
ment channels, auctions, and voting systems often involve a mechanism
in which some party must respond to a challenge or appeal some action
within a fixed time limit. This pattern of challenge-response mechanisms
poses great risks if, during periods of high transaction volume, the net-
work becomes congested. In this case, fee market competition can prevent
the inclusion of the response in blocks, causing great harm. As a result,
responders are allowed long periods to submit their response and overpay
in fees. To overcome these problems and improve challenge-response pro-
tocols, we suggest a secure mechanism that detects congestion in blocks
and adjusts the deadline of the response accordingly. The responder is
thus guaranteed a deadline extension should congestion arise. We lay
theoretical foundations for congestion signals in blockchains and then
proceed to analyze and discuss possible attacks on the mechanism and
evaluate its robustness. Our results show that in Ethereum, using short
response deadlines as low as 3 hours, the protocol has > 99% defense
rate from attacks even by miners with up to 33% of the computational
power. Using shorter deadlines such as one hour is also possible with a
similar defense rate for attackers with up to 27% of the power.

Keywords: Congestion, Challenge-Response

1 Introduction

DeFi platforms constructed over blockchains such as Ethereum have seen a recent
boom of activity and interest. Their growing ecosystem allows for increasingly
complex financial interactions executed in a fully decentralized manner. The
main building blocks used to construct these platforms are the smart contracts
that define the rules of interaction in code.

Smart contracts enable a wide range of applications, such as auctions, voting
systems, and second layer protocols (e.g., payment channels) that operate above
the blockchain layer. They typically provide rules that allow them to act as an
automated adjudicator in case conflicts between participants arise.

For many applications, interactions with smart contracts are time dependent
and are even subject to deadlines, meaning that in some cases, transactions
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added after a specific moment will effectively be rejected. For example in the
case of auctions, a bid must be received before the end of the auction otherwise
it is not valid. Another example appears in the context of payment channels [12]
where participants have a limited interval of time to dispute the division of funds
if they disagree with their peers.

A major weakness of such deadlines is that in cases where the blockchain is
congested, users that submit transactions will not have them included in blocks
in time. In fact, several attacks and failures can be attributed directly to this
weakness (we provide some examples below). One mitigation often employed by
participants is to offer higher fees for transactions with deadlines which means
users are usually overpaying. Another is to extend the deadlines which greatly de-
lays processing and settlement within the context of the relevant smart contract.
In many cases, transaction fees and deadlines are decided upon in advance, before
the exact conditions that will prevail when the transaction is actually transmit-
ted are known, which causes participants to take wider safety margins and in-
creases costs further. Due to the well-known scalability issues of blockchains [1],
we expect congested periods to become increasingly more common, which will
directly impact the design of time-sensitive smart contracts.

Our Contributions. In this work we present a mechanism aimed at solving
these issues. We propose to set short deadlines that are automatically extended
if congestion occurs. We lay the theoretical foundations of congestion monitor-
ing in blockchains and formalize the notion of challenge-response protocols in
this context. We then propose two different protocols to detect congestion over
multiple blocks: the ‘L Consecutive Blocks’ protocol defines uncongestion by the
existence of L consecutive uncongested blocks; its generalization, the ‘Sliding
Window (K-out-of-N)’ protocol, defines uncongestion by the existence of N con-
secutive uncongested blocks with K uncongested blocks among them. We show
that the Sliding Window protocol is more resilient to attacks than the L Consec-
utive Blocks protocol when attacked by miners. Furthermore, we propose a new
opcode for Ethereum that will provide the required functionality; we also pro-
vide an implementation (not requiring new opcodes) in Solidity, using opcodes
introduced by Ethereum Improvement Proposal 1559 (EIP 1559) [5].

Examples of Congestion Attacks and Related Failures. A recent well-known ex-
ample of congestion-related failure took place on Crypto Black Thursday (March
12th, 2020) when the price of Ethereum dropped by more than 50% in less than
24 hours [11]. This led to a panic-sale of coins and increased congestion. At the
peak, during a 2-3 hour window, the Ethereum blockchain’s fees climbed to $1.65
on average, more than 10 times their cost on previous days.

The drop in ETH price triggered many MakerDAO auctions to liquidate
collateral (typically collateral on short positions must be sold if prices fluctuate
too much). The tokens to be sold were purchased at almost no cost due to
the inability of many bidders to send transactions and participate. This has,
allegedly, been leveraged by one user to gain $8.3 million worth of ETH [3].

Several studies [10,13] deal with different types of attacks designed to prevent
a party from responding on time to a challenge [10]. Harris and Zohar [13] present
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an attack where the attacker forces many victims at once to flood the blockchain
with claims for their funds. The ensuing congestion allows the attacker to steal
the funds that cannot be claimed before the deadline. Our protocol will prevent
these issues by extending the deadlines until the congestion passes.

2 Related Work

Congestion is a real-world problem faced by the most prominent cryptocurren-
cies. In addition to the popular examples of Crypto Black Thursday or Cryptokit-
ties, widely discussed online [3,11,6], Sokolov [17] examined periods of congestion
caused by ransomware.

One way to deal with congestion is to improve the scalability of the underly-
ing consensus protocol [19,20,18,7,9] or to introduce higher-level layers that help
to scale. Solutions ranging from sharding [22], off-chain payment channels [12]
or layer-zero optimization [21] (i.e., network-level optimization) have been con-
sidered. All these solutions improve the number of transactions per second that
the network can process, but congestion may still occur even at higher rates.

Other methods that help to ensure that time-sensitive transactions are pro-
cessed are rather ad-hoc. For example, the replace by fee [4] and child pays for
parent [2] mechanisms allow users to add or change the fees of their transactions.
Bitcoin’s fee mechanism—equivalent to a first-price auction—is sub-optimal and
often results in users paying more than what is necessary. EIP 1559 was made to
change this mechanism in Ethereum [16,5]. EIP 1559 implements a base fee that
is burned. This base fee can be seen as an indication of the level of congestion
in recent blocks, and we utilize this in our implementation.

Another line of research that could potentially prevent transaction fees from
spiking considers order-fairness consensus protocols [14,15]. The idea is to ensure
that transactions are ordered in the blockchain in the same order they arrived
in. This also helps to avoid problems such as front-running [8].

3 Preliminaries and Definitions

3.1 Challenge-Response Protocols

A challenge-response protocol is an implementation of a pattern in which some
party must respond to a challenge within a fixed time limit. This pattern consists
of a challenge that takes effect at time Tc and a response deadline Trd which is the
latest time by which response to the challenge will be accepted. We call the time
period between Tc and Trd the challenge window. Responding to the challenge
during the challenge window yields different results compared to responding after
the deadline. The protocol we propose inspects the challenge window period and
extends it (by extending Trd) as long as the blockchain stays congested.



4 A. Lotem et al.

3.2 Blockchain Congestion

Our protocol has two components. First it relies on a mechanism to define what
it means for a block to be congested. We then use this definition to define an
uncongested period. Intuitively, a period will be (un)congested if some threshold
of blocks is (un)congested. We start by defining block congestion before moving
on to presenting different period congestion definitions and choosing one that
meets our requirements.

Blocks and Transactions. A block B = {tx1, · · · , txn} is as a set of transactions
(we ignore the order of transactions in the block as well as other data—such
as nonce—as they are irrelevant to our problem). Transactions pending to be
included in a block are kept locally by each node in their mempool until they
are included in the chain. Each transaction tx has a size w(tx), and a fee density
φ(tx). The fee paid by the transaction is therefore w(tx) · φ(tx). We define the
total weight of transactions in a block B with a fee density above θ asWB(θ) :=∑
tx∈B: φ(tx)≥θ w(tx).

Blocks can contain transactions with total size bounded by B, i.e., WB(0) ≤
B. For simplicity, we treat every block as full, i.e., for any block WB(0) = B (if
necessary, we fill them artificially with transactions with a fee of 0).

The total amount of fees collected from a block by the miner is UB :=∑
tx∈B w(tx) · φ(tx). If the size of the mempool is bigger than the maximum

block size WB(0), we assume that honest miners choose the transactions in a
way to maximize the fees they get.

Period. A period Pe = (b1, b2, ..., bn) in the blockchain is a non-empty sequence
of consecutive blocks. We denote the length (number of blocks) of the period
by |Pe| = n, and write for i ∈ {1, ..., n}: Pe[i] = bi ∈ Pe. For a period P2, we
say that period P1 is included in P2 and note P1 ⊆ P2 if every block in P1 is
included in P2.

In this work, we want to capture the notion of congestion: a phenomenon
where there’s a spike in the number of transactions waiting in the mempool.
Since the mempool is not part of the blockchain, we instead rely on the data in
the blocks in order to define congestion. We propose the following definition for
block congestion.

Definition 1 ((θ, γ)-congestion). We say that a single block B is (θ, γ)-conges-
ted if WB(θ) ≥ γ · B and denote Cθ,γ(B) = 1, where Cθ,γ is the corresponding
indicator function.

Per this definition, all transactions above fee density θ are examined and
required to make up at least a γ-fraction of the block in terms of size. Intuitively,
for γ = 1 the definition captures that if a block is (θ, 1)-congested, a transaction
needs to have a fee density that is at least θ in order to have a better chance of
being included. In other words, we use the price of entering a transaction to the
blockchain as a reliable signal for congestion.
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For a block B and a fee density θ ≥ 0, we define the θ-weight threshold
γB(θ) as the maximum fraction of the block weight under which the block is

(θ, γ)-congested. From definition 1 it is clear that γB(θ) = WB(θ)
B . Similarly, for

a block B and a fraction γ ≥ 0, we define the γ-fee density threshold θB(γ) as
the maximum fee density under which the block is (θ, γ)-congested (θB(γ) :=
max{θ | Cθ,γ(B) = 1}).

Block Manipulation. One of the key measures we are interested in is when is an
adversary able to manipulate blocks’ congestion signals. When a miner mines
a block, they can choose to include transactions from their mempool or to add
dummy transactions that move money between their accounts and pay a fee (to
themselves), making the fees appear different than they ought to be. However,
miners cannot manipulate blocks at arbitrary heights, and doing so would in-
cur a cost. The miner’s chance of mining a new block depends on its relative
computational power. Therefore, as is standard, we denote the computational
power of an adversary by α. Each block has a probability α to be mined by the
adversary, and 1 − α to be mined by the other miners. Furthermore, giving up
mempool transactions means missing out their fees and hence induces a loss that
we compute in the next two propositions.

Proposition 1. An adversary manipulating a block B to make it (θ1, γ1)-conges-

ted when it is not, will lose a potential profit of at-least B·
∫ 1

1−(γ1−γB(θ1))
θB(γ) dγ.

Proposition 2. An adversary manipulating a block B to reverse its signal from
(θ1, γ1)-congested to not congested will lose a potential profit of at-least B ·∫ γB(θ1)

γ1
(θB(γ)− θ1) dγ.

The proofs for both propositions can be found in Appendix A.1.
Before moving on to define period congestion, we note that there exist other

ways in which block congestion could be defined. For example, in Section 5, we
take the EIP 1559 base fee as a measure of congestion and use it to implement
our suggested protocol. We include several other examples that are less efficient
in Appendix B.

Congestion Vector of a Period. To determine whether a period Pe is uncongested
we will refer to the congestion vector Pec := (C(Pe[i]))ni=1 ∈ {0, 1}n which
consists of the congestion signal of its blocks. Intuitively, if most of the blocks in
the period are congested then the period is congested and vice-versa. However,
we must also account for the fact that an adversary may be able to change the
congestion signal of some of the blocks, as already discussed. We will consider
different protocols to define period uncongestion, a situation in which the period
is considered not congested. An uncongestion period protocol is a function that
we denote by UCP:{0, 1}∗ → {0, 1}. This function takes as input a binary series
representing the congestion signal of the blocks in the examined time period.
It will return 0 if the period is congested and 1 otherwise. This function can
furthermore be extended to also provide auxiliary information such as a proof π
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in the case where the period is uncongested. For the efficiency of the protocol,
we will strive for a definition that can provide a compact and easy-to-verify
proof. Throughout the rest of the paper, we use B(n, p) to denote the binomial
distribution with parameters n and p.

Definition 2 (Period Manipulation). For a period Pe and an adversary with
a fraction α of the total computational power, we associate a manipulated period
P̂ e defined as follows. For i ∈ {1, . . . , |Pe|} the adversary can replace Pe[i] with
probability α, with a block that has a congestion signal of their choice. We denote
by m = m|Pe|(α) ∼ B(|Pe|, α) the vector that indicates which of the blocks
in the given period the adversary controls, meaning the adversary can replace
the Pe[i] block’s congestion signal iff m[i] = 1. We then define the adversary’s
manipulation set Sm,Pe := { ˆPec ∈ {0, 1}|Pe| | ∀1 ≤ i ≤ |Pe| : m[i] = 0 ⇒

ˆPec[i] = Pec[i]}. Intuitively, Sm,Pe corresponds to the set of possible congestion
vectors that the adversary could create by changing the signal of the blocks that
it controls.

In a real world setting, even if there is a long period of uncongestion, it could
be the case that one or more of the blocks are fuller than the others due to some
randomness in the transactions’ arrival time (e.g., there was a temporary high
transaction volume). To account for this randomness, we make a simplifying
assumption that blocks are congested independently with probability p and say
that the blockchain is p−congested. We note that, in reality, congestion is often
changing and is usually correlated when considering several consecutive blocks.
We leave more complex models of congestion for future work. In our case, the
congestion vector of a period Pe chosen at random has a binomial distribution:
Pec ∼ B(n, p). When studying attacks where the adversary tries to convert a
congested period to an uncongested one, we will assume that p is close to one
(i.e., most of the blocks are congested), whereas when studying the opposite
case, we will consider p to be close to zero.

Our protocol consists in extending the deadline of challenge-response in the
event of a congestion period. However, to avoid an edge case where the deadline
is extended indefinitely, we define M̂ , an upper bound on the total length of the
extended period.

Definition 3 (M̂-maximum Extension). Given a challenge-response proto-
col in a p−congested blockchain where the challenge starts at block height h, we
say that M̂ is the maximum extension of the challenge if the deadline cannot be
extended further than height h+ M̂ .

3.3 Desirable Properties of Protocols

In this section, we define some properties that we aim for our protocol to achieve.
In the rest of the paper we use the notation D ←− s to denote that s was se-

lected randomly from the distribution D. We start by describing the two types of
attack that we will consider—a congestion attack and an uncongestion attack—
before defining the robustness of the protocol, which captures the security of the
protocol against either attack.
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Definition 4 (Congestion/Uncongestion Attack on Pe). Given a period
Pe, chosen at random in a p-congested blockchain, we say that the adversary
wins a congestion, resp. uncongestion, attack on Pe if it can manipulate Pe into
an uncongested, resp. congested, period.

Definition 5 ((α, p, q, n)-congestion Robustness). We say an uncongestion
period protocol UCP:{0, 1}∗ → {0, 1} is (α, p, q, n)-congestion robust if, given
an adversary with a relative computational power α, his probability of winning a
congestion attack, i.e., of successfully manipulating a period Pe of n blocks into
a congested period P̂ e, is less than q.

B(n, p)←− Pe : Pr(∃P̂ e ∈ Sm,Pe s.t. UCP(P̂ e) = 0) ≤ q.

Definition 6 ((α, p, q, n)-uncongestion Robustness). We say an unconges-
tion period protocol UCP:{0, 1}∗ → {0, 1} is (α, p, q, n)-uncongestion robust
if, given an adversary with a relative computational power α, his probability of
winning an uncongestion attack, i.e., of successfully manipulating a period Pe
of n blocks into an uncongested period P̂ e, is less than q.

B(n, p)←− Pe : Pr(∃P̂ e ∈ Sm,Pe s.t. UCP(P̂ e) = 1) ≤ q.

Definition 7 (Monotonicity). A congestion protocol is monotone if for ev-
ery two periods Pe1 and Pe2, if Pe1 ⊆ Pe2 and Pe1 is considered uncongested,
then so is Pe2, i.e., ∀Pe1 ⊆ Pe2 : UCP(Pec1) = 1→ UCP(Pec2) = 1.

A monotone protocol is easier to verify as the prover only needs to select a
portion of blocks from the time period Pe in order to prove uncongestion. Fur-
thermore, a monotone protocol requires only sporadic access to the blockchain.
A prover can go offline and prove uncongestion when they come back online by
choosing any uncongested period from the time they were offline. In the case of
a non-monotonic protocol, if the prover is offline during an uncongested period,
they cannot prove the uncongestion of the longer period, after they came back
online, they missed the uncongested period.

Efficiency Properties. We define two properties that capture the efficiency of the
protocol.

– Concise proof size The evidence needed to prove uncongestion of a period
should be as concise as possible.

– Concise refresh information The extra information needed to be kept
when checking the congestion signal of a period that has already been ex-
tended due to congestion should be as concise as possible. Ideally, when we
extend a period from Pe1 to Pe2 in order to check Pe2 for congestion, we
should not have to recheck every block in Pe1 but, rather, aggregate this
information.

In the next section we will discuss different period congestion protocols with
the goal of finding one that will be proof efficient and robust against an attacker
with reasonable hash rate with high probability.
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4 Uncongested Period Protocols

In this section, we examine different protocols that fit the definition of congestion
of a period Pe. We start by presenting “naive” protocols and discuss why they
are not good enough, i.e., why they lack the desirable properties defined in
Section 3.3.

4.1 Strawman Protocols

Definition 8 (Cumulative M). Period Pe is uncongested if there exists M
blocks which are uncongested: UCPCM (Pec) = 1↔

(∑
b∈Pe(1− C(b)) ≥M

)
.

This protocol is monotonic but is not sufficiently robust to adversarial at-
tacks: if we wait long enough, the probability of the adversary controlling M
blocks becomes overwhelming (even if α is small). We solve this in the next
strawman by considering the percentage of blocks instead of a fixed number.

Definition 9 (Percentage). A period Pe is uncongested if x% of its blocks are
not congested: UCPPC(Pec) = 1↔

(∑
b∈Pe(1− C(b)) ≥

x
100 · |Pe|

)
.

This protocol is much more robust but has the drawback of not being mono-
tonic. For example, if all blocks are uncongested during the first part of the period
and congestion begins in the second part, then the beginning of the period is
uncongested while the whole period may not be.

We now suggest the following monotonic rule:

Definition 10 (L Consecutive Blocks). A period Pe is uncongested if there
exists at least L consecutive uncongested blocks included in it:
UCPL(Pec) = 1↔ (∃ 1 ≤ i ≤ |Pe| − L+ 1 s.t. ∀ 0 ≤ j ≤ L− 1 : Pec[i+ j] = 0).

We show that this protocol is monotonic and inspect its efficiency in Ap-
pendix A.2. We now evaluate its robustness.

Evaluation of the Robustness of the L Consecutive Blocks protocol.
We examine situations where the adversary attempts to manipulate the conges-
tion signal for a given period. We separate this into two attacks: uncongestion
and congestion attacks (as in Definition 4). We strive to achieve a high defense
rate against both attacks, meaning finding a value L that will give a low proba-
bility for an adversary to succeed in each of the attacks separately.

Evaluation of the Uncongestion Attack. In order to compute the probability of
an attacker to successfully manipulate Pe into an uncongested period, we define
the following matrix T(L+1)×(L+1):

∀ 0 ≤ i, j ≤ L : Ti,j =


(1− α) · p if j = 0 ∧ i 6= L

α+ (1− α) · (1− p) if j = i+ 1

1 if i = j = L

0 otherwise

(1)
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and denote by ei the ith unit vector of dimension L+1 (i.e., ei has a 1 in the
ith coordinate and 0’s elsewhere).

Theorem 1. The probability of an attacker with a relative computational power
α to successfully manipulate Pe into an uncongested period in a p-congested
network equals e1 · Tn · etL+1.

Proof. We note that, at each block, the attacker has a probability α to mine the
next block, which allows them to decide its congestion level. In this context, this
means setting the block to be uncongested. In addition, the congestion signal of
a block not mined by the attacker depends on the prevailing congestion state
which is expressed by p. The probability of an honest block being congested, resp.
uncongested, is hence equal to (1− α) · p, resp. α+ (1− α) · (1− p). We define
the following Markov chain that describes a random walk on Pe’s blocks and
whose states represent the number of consecutive blocks that are uncongested
at a point in time.

𝐿 − 1 𝐿0 1 2𝑠𝑡𝑎𝑟𝑡 . . .

𝛼 +
(1 − 𝛼) ∙ (1 − 𝑝)

𝛼 +
(1 − 𝛼) ∙ (1 − 𝑝)

𝛼 +
(1 − 𝛼) ∙ (1 − 𝑝)

𝛼 +
(1 − 𝛼) ∙ (1 − 𝑝)

1

(1 − 𝛼) ∙ 𝑝

(1 − 𝛼) ∙ 𝑝

(1 − 𝛼) ∙ 𝑝 (1 − 𝛼) ∙ 𝑝

𝛼 +
(1 − 𝛼) ∙ (1 − 𝑝)

The initial state is 0 since it corresponds to the 0 consecutive uncongested
blocks at the beginning of the walk. With each step, we move from state i to
state i + 1, for i < L, if the block is uncongested, and return to state 0 if it is
not. If we reach state L, we stay there since it means the adversary has reached
the goal of L consecutive uncongested blocks in Pe and can manipulate it to an
uncongested period.

T is the corresponding transition matrix; hence the probability of reaching
state L in |Pe| = n steps is expressed by e1 · Tn · etL+1.

Evaluation of the Congestion Attack. For the attack in the opposite direction
we define T̂(L+1)×(L+1) as follows:

∀ 0 ≤ i, j ≤ L : T̂i,j =


α+ (1− α) · p if j = 0 ∧ i 6= L

(1− α) · (1− p) if j = i+ 1

1 if i = j = L

0 otherwise

(2)

Theorem 2. The probability of an attacker with a relative computational power
α to successfully manipulate Pe into a congested period, in a p-congested network
equals 1− e1 · T̂n · etL+1.
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Proof. This time, if the attacker succeeds in mining a block, they will make it
congested. Therefore the probability for a block to be uncongested is (1 − α) ·
(1− p). As before, we define the following Markov chain whose states represent
the number of consecutive blocks that are uncongested at a point in time in Pe:

𝐿 − 1 𝐿0 1 2𝑠𝑡𝑎𝑟𝑡 . . .

(1 − 𝛼) ∙ (1 − 𝑝) (1 − 𝛼) ∙ (1 − 𝑝)
(1 − 𝛼) ∙ (1 − 𝑝)

(1 − 𝛼) ∙ (1 − 𝑝)

1

𝛼 + (1 − 𝛼) ∙ 𝑝

𝛼 + (1 − 𝛼) ∙ 𝑝

𝛼 + (1 − 𝛼) ∙ 𝑝 𝛼 + (1 − 𝛼) ∙ 𝑝

(1 − 𝛼) ∙ (1 − 𝑝)

T̂ is the corresponding transition matrix. Therefore, the probability for the
adversary to succeed in the congestion attack is equivalent to the probability that
the rest of the miners will not reach the L state in n steps, which is expressed
by: 1− e1 · T̂n · etL+1.

Now that we have the attacks’ success rates, we examine the robustness of
the protocol against both attacks for different values of L.

Although attacks are potentially expensive for the adversary (who needs to
change the contents of its block and, hence, loses transaction fees), we still desire
a low success probability for the attack even for strong attackers. We assume in
the following evaluations that the attacker controls 33% of the computational
power.

Given that congestion may cause period extension, we need a value for L
that gives protection also against attacks over longer periods. We examine the
behavior of the protocol for periods as long as M̂ using different values for L.

The value p should represent realistic network conditions. For our analysis we
pick p = 0.85 when studying the congestion attack, to simulate more congested
settings, or p = 0.15 when studying the uncongestion attack, to simulate rela-
tively uncongested settings. Other values can be plugged in, if needed, for other
conditions. We start by examining the robustness of the protocol for a period of
1 day.

Figures 1a-1b present the probability of success in both attacks for two differ-
ent period lengths: 6450 blocks in Figure 1a and 144 blocks in Figure 1b. These
periods correspond, roughly, to a single day in Ethereum and a single day in
Bitcoin. The red curves correspond to the congestion attack and the blue curves
to the uncongestion attack. We compute these probabilities for different values
of L.

The results in both figures show there is no value L that gives a probability of
success less than 1% for both attacks. Formally, it shows that the L Consecutive
Blocks protocol cannot be simultaneously (0.33, 0.15, 0.01, 1 day)-congestion ro-
bust and (0.33, 0.85, 0.01, 1 day)-uncongestion robust. Therefore, we find the L
Consecutive Blocks protocol not sufficiently secure. Intuitively, this is because
more robust estimates of congestion are typically obtained over longer observa-
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(a) |Pe| = 6450 ∼ 1 day in Ethereum (b) |Pe| = 144 ∼ 1 day in Bitcoin

Fig. 1: Attack success rate as a function of L, for α = 0.33

tion windows. The L Consecutive Blocks protocol obtains longer observations
if L is increased, but then the requirement for consecutive blocks to be uncon-
gested is too strict and is not robust. As a result of this insight, we propose a
new protocol that generalizes the L Consecutive Blocks protocol and allows for
longer observation windows with a relaxed condition for uncongestion.

4.2 Sliding Window (K-out-of-N) Protocol

Definition 11 (K-out-of-N Sliding Window). A period Pe is uncongested
if there exists a period P̂ e of length N included in it in which at least K blocks
are uncongested.

UCPSW (Pec) = 1↔

 ∃ P̂ e ⊆ Pe : |P̂ e| = N ∧

∑
b∈P̂ e

(1− C(b)) ≥ K


We note that the L Consecutive Blocks protocol is a special case in which

L = N = K.

Proposition 4. The Sliding Window protocol is monotonic.

Proof. Given an uncongested period Pe1, according to the Sliding Window pro-
tocol, which is included in period Pe2:

UCPSW (Pec1) = 1⇒

∃ P̂ e ⊆ Pe1 : |P̂ e| = N ∧

∑
b∈P̂ e

C(b) ≥ K


Pe1 ⊆ Pe2 ⇒

(
P̂ e ⊆ Pe2

)
∧

∑
b∈P̂ e

C(b) ≥ K


⇒ UCPSW (Pec2) = 1
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We now evaluate its efficiency.

Proof Size. In order to provide evidence for the uncongestion of a period Pe of
size n, it is enough to point to a window in which uncongestion occurs. Formally,
to present π = i ∈ {1, ..., n−K + 1} s.t.

∑i+N
l=i (1− C(Pe[l])) ≥ K.

Refresh Information. Given a congested period Pe, and P̂ e that extends it, in
order to determine the congestion level of the extended period UCPSW ( ˆPec), it
is enough to check only windows that overlap blocks in P̂ e \ Pe.

Evaluation of the Sliding Window Protocol’s Robustness. We consider
the two attacks in Definition 4. We first note that the two attacks may differ in
their consequences. While the congestion attack can cause a delay in the response
deadline (i.e., a deadline will be extended even if it is not really needed), the
uncongestion attack might lead participants to miss the chance to respond on
time, as the deadline will not be extended even if the network is congested. The
damage in each case depends on the particular use case. For example, in the
case of payment channels, not responding in time is more severe and may lead
to financial losses. We strive to achieve a high level of security against both
types of attack, i.e., to find values for parameters (N,K) that will yield a low
probability of success for both.

We begin by presenting upper bounds on the probabilities of success in each
of the attacks.

Theorem 3. The probability of an attacker with a relative computational power
α to successfully manipulate Pe into an uncongested period, in a p-congested
network, is bounded above by (n − N + 1) ·

∑N
j=K

(
N
j

)
· qj · (1 − q)N−j, for

q = α+ (1− p) · (1− α).

Proof. The probability for a block to be uncongested during this attack is q =
α+ (1− p) · (1− α). In a period of size n, there are n−N + 1 different sliding
windows. We denote by Ai the event in which there are K out of N uncongested
blocks in the ith sliding window. Therefore, the probability of a single sliding
window being uncongested is P (Ai) =

∑N
j=K

(
N
j

)
·qj ·(1−q)N−j . To succeed in the

uncongestion attack, at least one of the sliding windows has to be uncongested,
which is expressed by P (∪n−N+1

i=1 Ai). We use the union bound to bound this
probability and get:
P (∪n−N+1

i=1 Ai) ≤
∑n−N+1
i=1 P (Ai) = (n−N + 1) ·

∑N
j=K

(
N
j

)
· qj · (1− q)N−j

Theorem 4. The probability of an attacker with a relative computational power
α to successfully manipulate Pe into a congested period, in a p-congested network
is bounded above by (

∑K−1
j=0

(
N
j

)
· qj · (1− q)N−j)b n

N c, for q = (1− p) · (1− α).



Sliding Window Challenge Process for Congestion Detection 13

Proof. The probability for a block to be uncongested is q = (1 − p) · (1 − α).
We denote by Bi the event in which there are less than K uncongested blocks
in the ith sliding window. The probability of a single sliding window being con-
gested is P (Bi) =

∑K−1
j=0

(
N
j

)
· qj · (1 − q)N−j . To succeed in the congestion

attack, all sliding windows in the period must be congested, which is expressed

by P (∩n−N+1
i=1 Bi). We bound this probability by P (∩b

n
N c
i=1 BN ·(i−1)+1), i.e., we

consider a subset of events Bi that are independent from each other (removing
overlapping windows). We compute the intersection of the pairwise independent

events and get: P (∩n−N+1
i=1 Bi) ≤ P (∩b

n
N c
i=1 BN ·(i−1)+1) =

∏b n
N c
i=1 P (BN ·(i−1)+1) =

(
∑K−1
j=0

(
N
j

)
· qj · (1− q)N−j)b n

N c.

We would like to compute the robustness of the protocol for 1 day to 1
hour sliding windows. We examine the situation where a period Pe of size n is
chosen at random and the blockchain is p − congested for values of p = 0.85
(relatively congested) and p = 0.15 (relatively uncongested) against an attacker
with computational power α ≤ 0.33. In the evaluation, we allow periods to be
extended up to two weeks, a reasonable time for congestion to pass. We set the
M̂ -maximum extension (see Definition 3) accordingly (90300 blocks in Ethereum
and 2016 blocks in Bitcoin).

We first evaluate the attack over Ethereum, computing the above bounds
for different sliding window sizes. We begin with a sliding window of 1 day
(N = 6450), setting K = N

2 = 3225. Figure 2 presents the two upper bounds

for the different possible period lengths N ≤ n ≤ M̂ . For the protocol to be
considered secure, we need low values in both curves for the different period
lengths (since periods might be extended). As can be seen, the probabilities
in the graph are extremely low, showing the protocol to be very secure. We
emphasize that the blue curve is not horizontal, as shown in the graph; all of
its values are smaller than 10−323. Note that these are only upper bounds; the
actual probabilities are even lower.

Fig. 2: Upper bounds on the attacks’ success rates as a function of the period
length, for M̂ = 90300, N = 6450,K = 3225, α = 0.33
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We evaluate the attack for smaller sliding windows. The following table sum-
marizes our results:

N K Uncongestion Congestion
6450 (1 day) 3225 < 10−323 1.44× 10−29

3225 (12 hours) 1612 1.26× 10−10 8.06× 10−16

1612 (6 hours) 815 7.14× 10−5 1.08× 10−7

806 (3 hours) 421 8.87× 10−3 3.16× 10−3

The wider the sliding window is, the greater the protection. For smaller
sliding windows, such as 1 hour (N = 269), we can achieve a 99% defense rate
against each attack if we lower the attackers’ computation power to α ≤ 0.27
(instead of 0.33). We provide examples of N,K values and the level of protection
they provide (an upper bound), but these are configurable and subject to the
user’s discretion. One can choose to increase the level of protection from one
attack at the expense of the other, or to set a larger initial period length (> N)
to increase the protection.

Next, we want to know what happens with smaller periods such as in Bitcoin,
which has longer block intervals. To do so, we set M̂ = 2016 and begin with a
sliding window of 1 day (N = 144).

We use a simulation to draw 100,000 samples Pec ∼ B(M̂, p) of congestion
vectors and to compute the success rates of both attacks among the samples (Fig-
ures 3a,c,d). We use error plots to plot the standard error of the data; however,
the errors are very small and therefore are almost invisible in the graphs.

Figure 3a presents the probability of success in each of the attacks for dif-
ferent K values. As the graph shows, choosing K = 89 gives protection against
both attacks. We compute the upper bounds (from Theorems 3-4) for this value
of K in Figure 3b. The presented bounds as they appear in the graph are loose
compared to the simulation results and afford a low level of defense, especially
against the congestion attack. These bounds give us useful, but non-tight, upper
bounds on the results for periods that are of longer length, for which the prob-
ability is extremely small. To get more precise results, we use more simulations
to compute the congestion attacks’ success rate for different period lengths and
present the results in Figure 3c. Each curve corresponds to a different value of α,
the computational power of the attacker. The defense rate against congestion at-
tacks is extremely low for short periods. For α = 0.33, we reach a > 99% defense
rate only for periods of ∼ 11 days or more. Lowering the computational power
of the adversary naturally improves these results. For example, considering an
attacker with computational power α = 0.2 results in an above 0.9995 defense
rate for period lengths starting from 2 days.

Finally, in Figure 3d we consider an attacker with a computational power
α = 0.2 and show the congestion attack success rate for different choices of
N,K correspondig to sliding windows of lengths 24/12/6/3 hours. We do not
present the uncongestion attack results which had above 99% defense rate for
any N ≤ n ≤ M̂ = 2016.

We conclude that the longer the periods are, the higher and more effective the
protection against attacks is. In Ethereum, we obtained very high defense rates
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(a) Attack success rate as a function of K,
for n = 2016, N = 144, α = 0.33

(b) Upper bounds on the attacks’ success
rates as a function of the period length, for
N = 144,K = 89, α = 0.33

(c) Congestion attack success rate as a func-
tion of the period length, for N = 144,K =
89

(d) Congestion attack success rate as a
function of the period length, for α = 0.2

Fig. 3: Evaluation of the attacks’ success rates for M̂ = 2016 (2 weeks in Bitcoin)

even when choosing short sliding window sizes and against strong attackers. In
Bitcoin, on the other hand, we need to compromise on the window size and on
the attackers’ power to achieve higher defense.

We defined uncongested period protocols and suggested a concrete one, the
Sliding Window protocol, which meets our requirements (as defined in Sec-
tion 3.3). In the next section, we will describe how to use an uncongested period
protocol to adjust the challenge-response protocol to deal with congested peri-
ods.

4.3 Application to Challenge-Response Protocols

A challenge-response protocol consists of a challenge that takes effect at time
Tc and a response deadline Trd (see section 3.1). We link Tc and Trd to their
corresponding block height and denote by b(T ) the block at height T .
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The parties involved in the challenge decide in advance on an uncongestion
period protocol UCP to use. We recall that UCP:{0, 1}∗ → {0, 1} accepts a
congestion vector (a binary series representing the congestion signal of blocks
in a period) and returns 1 if the period is congested and 0 otherwise. To apply
the uncongestion period protocol, the parties adjust Trd to a short deadline that
gives them a reasonable time to respond to the challenge assuming an optimal
case with no congestion.

The response deadline Trd is applied only in the event that the challenge
window Pe = (b(Tc), b(Tc + 1), ..., b(Trd)) is uncongested. In the case where the
challenge window is congested, we repeatedly extend Trd, 1 block at a time,
as long as it remains congested. To avoid an edge case where the deadline is
extended indefinitely, we define T̂rd = Tc + M̂ , an upper bound on the deadline
(see Definition 3). The challenge-response protocol adjustment is summarized in
the algorithm below.

Tc ← init
Trd ← init
Pe = (b(Tc), b(Tc + 1), ..., b(Trd))
Pec ← congestion vector(Pe)

while UCP(Pec) = 0 and Trd < T̂rd do
Trd ← Trd + 1
Pe = (b(Tc), b(Tc + 1), ..., b(Trd))

We emphasize that the extension of the deadline is not necessarily carried
out at the exact moment of the deadline (since smart contract actions need
to be triggered by a transaction to the contract). Instead, a transaction that
is submitted afterwards is determined to be either before or after the deadline
given any possible extensions that are due. The uncongestion period protocol
is specified in advance in the smart contract, and the deadline calculation is
triggered either by a late response to the challenge or by the challenger that
claims that a response did not arrive in time.

5 Implementation

We provide an implementation of the Sliding Window protocol as an Ethereum
smart contract using the EIP 1559 base fee to determine block congestion. EIP
1559 implements a base fee that is adjusted up and down by the protocol ac-
cording to how congested the network is. The EVM supports fetching the base
fee of the highest (current) block. We suggest extending this to fetch the base
fee of any block, and to add an opcode that checks whether a block is congested
(without such opcodes, it is not possible to fully implement the mechanisms put
forward in this paper). This opcode will receive as inputs a block and a maxi-
mum base fee (chosen by a user) and will return whether the maximum base fee
exceeds the block’s base fee.
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In the implementation, we set the sliding window size equal to the initial
deadline of the examined period (before being granted any extension).

The full github1 repository includes the smart contracts, the new opcode,
and the tests. In addition, we include the Solidity code of the contracts in Ap-
pendix C.

6 Conclusion

In this paper, we tackled a problem that arises when challenge-response pro-
tocols face congested periods. When the network experiences congestion, users
will often miss the response deadline, which can lead to serious issues including
financial loss. We formalized the problem and proposed a new protocol called
the Sliding Window as a solution. Our protocol defines a reliable way to detect
congested periods by looking only at the data available on-chain. We then used
this to extend the challenge-response deadline when congestion occurs. We stud-
ied the security of the protocol for different parameters. Our results showed that
it is possible to decrease the time settlement (deadline) of challenge-response
protocols significantly, while expanding the security of the protocol to deal with
cases of congestion.

For future work, it would be interesting to evaluate and optimize this protocol
and its security analysis for more realistic congestion settings—in particular,
settings in which congestion is correlated between consecutive blocks—and to
provide more experimental analysis of these settings. Is is also of interest to
explore whether Ethereum’s proposed base fee can be used as a sufficiently robust
congestion signal.
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A Proofs

A.1 Proofs of Section 3.2

Proof of Proposition 1.

Proposition 1. A miner manipulating a block B to make it (θ1, γ1)-congested

when it is not will lose a potential profit of at least B ·
∫ 1

1−(γ1−γB(θ1))
θB(γ) dγ.

Fig. 4: Cumulative function of the θ-weight threshold of a block B before and
after miner manipulation

Proof. Given a block B which is not (θ1, γ1)-congested (Cθ,γ(B) = 0), it is
possible to manipulate it into a block B which is (θ1, γ1)-congested (Cθ,γ(B) =
1) by replacing some of its transactions with dummy transactions that have fee
density ≥ θ1. In order to maximize its revenue, the adversary will remove the
transactions with the lowest fee density. The minimum portion of transactions
that the adversary needs to remove is γ1 − γB(θ1) (by the definition of γB),
and by doing so the miner misses the rewards associated with removing these
legitimate transactions.

Using the notations from above, we compute a lower bound on the miner’s

loss, which can be expressed by UB ≤ UB − B ·
∫ 1

1−(γ1−γB(θ1))
θB(γ) dγ (see

Figure 4). Note this is only a lower bound since a miner can remove transactions
only in their entirety and not parts of them.

Proof of Proposition 2.

Proposition 2. A miner manipulating a block B to reverse its signal from
(θ1, γ1)-congested to not congested will lose a potential profit of at least B ·∫ γB(θ1)

γ1
(θB(γ)− θ1) dγ.
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Fig. 5: Cumulative function of the θ-weight threshold of a block B before and
after miner manipulation

Proof. The cost of reverting a block signal to uncongested depends on the state
of the mempool. It is likely that transactions with fee density slightly lower
than θ1 will be available in the miner’s mempool allowing him to substitute the
original transactions with fee density ≥ θ1 for these and lose the fee difference.
This allows us to give a bottom bound on the loss which can be expressed by

UB ≤ UB − B ·
∫ γB(θ1)

γ1
(θB(γ)− θ1) dγ (see Figure 5).

A.2 Proof of Section 4

Proposition 3. The L Consecutive Blocks protocol is monotonic.

Proof. Given a period Pe1, uncongested according to the L Consecutive Blocks
protocol, which is included in period Pe2:

UCPL(Pec1) = 1⇒
∃ 1 ≤ i1 ≤ |Pe1| − L+ 1 s.t. ∀ 0 ≤ j ≤ L− 1 : Pec1[i1 + j] = 0

Pe1 ⊆ Pe2 ⇒
∃ 1 ≤ k ≤ |Pe2| − |Pe1|+ 1 s.t. ∀ 1 ≤ d ≤ |Pe1| : Pec1[d] = Pec2[k + d− 1]

⇒ for i2 = k + i1 − 1, ∀ 0 ≤ j ≤ L− 1 : Pec2[i2 + j] = 0

⇒ UCPL(Pec2) = 1

We now evaluate its efficiency.
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Proof size. In order to provide evidence for the uncongestion of period Pe of size
n, it is enough to point to the location of the first block in a series of L consecutive
uncongested blocks, given formally by π = min{i ∈ {1, ..., n−L+ 1} | ∀ 0 ≤ j ≤
L− 1 : Pec[i+ j] = 0}.

Refresh Information. Given a congested period Pe, and P̂ e that extends it, in
order to determine the congestion level of the extended period UCPL( ˆPec), it
is enough to check only P̂ e \ (Pe[: −(L− 1)]), the period beginning L-1 blocks
before Pe ends.

B Block Congestion Definition: Examples

In Definition 1, we offered to define the congestion of a block based on the fee
densities. Other, less effective, ways in which block congestion could be defined
are listed below:

– By transaction with lowest fee density: A block is θ-congested if the lowest
fee density for a transaction in it is bigger than θ: mintx∈B φ(tx) ≥ θ. How-
ever, a miner could decide to always enter a single transaction with a very
low fee density (less than θ) and easily change a block from congested to not
congested; hence this scheme is easily manipulable.

– By transaction with highest fee density: A block is θ-congested if the highest
fee density of its transactions is bigger than θ: maxtx∈B φ(tx) ≥ θ. A miner
could decide to always enter a single (dummy) transaction with a high fee
density (higher than θ) and easily change a block from not congested to
congested; hence this scheme is also easily manipulable.

– By non-zero-fee transaction occupancy (”block size”): A block is γ-congested
if it is full at γ-fraction of its occupancy with non-zero-fee transactions:∑
tx∈B: φ(tx)>0 w(tx) ≥ γ · B. A miner could artificially add transactions

with positive fee density to fill the block at no cost.

– By transaction fees (instead of fee density): A block is (f ,γ)-congested if at
least a fraction γ of it is filled with transactions with fees above some value
f :
∑
tx∈B:φ(tx)·w(tx)≥f w(tx) ≥ γ · B. A miner could prioritize transactions

by their size in order to decide the congestion signal, without lowering his
profit from the fees (UB).
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C Code

contract BlockchainMock {

// Simulate block.basefee(). EVM only fetches the current basefee.

struct Block { uint baseFee; }
Block[] public blocks;

// Should the caller consider this block congested?

function isCongested(uint blockNumber, uint maximumBaseFee)

public view returns (bool) {

if(blocks[blockNumber].baseFee > maximumBaseFee) {
return true;
}

return false;
}
}

contract Auction is SlidingWindow {

bool start = false;

uint startBlock;

uint k;

uint n;

uint gasPriceCeiling;

function startAuction(uint startBlock, uint k, uint n,
uint gasPriceCeiling) public {
startBlock = startBlock;

k = k;

n = n;

gasPriceCeiling = gasPriceCeiling;

start = true; // Kick-start the auction!

}

function finaliseAuction() public returns(bool) {
if(isPeriodCongested(startBlock, k, n, gasPriceCeiling)) {
return false;
}

return true;
}
}
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contract SlidingWindow is BlockchainMock {

function isPeriodCongested(uint startBlock, uint k, uint n,
uint maximumBaseFee) public view returns (bool) {

require(n>=k, ‘N should be greater than or equal to K.’);
require(blocks.length>=n, ‘Total should be greater than or equal to N.’);

uint totalCongested = 0;

bool[] memory recordCongestion = new bool[](blocks.length − startBlock);

for(uint i=startBlock; i < startBlock+n; i++) {
// Keep a record of this block’s congestion.

recordCongestion[i] = isCongested(i, maximumBaseFee);

// Sum of congestion (so far).

if(recordCongestion[i]) {
totalCongested = totalCongested + 1;

}

if(totalCongested>=k) {
return true;
}
}

// Activate the sliding window.

for(uint i=startBlock+n; i<blocks.length; i++)

// Remove start of the window.

if(recordCongestion[i-n] {
totalCongested = totalCongested - 1;

}

Keep a record of this block’s congestion.

recordCongestion[i] = isCongested(i, maximumBaseFee);

// Add to the end of the window.

if(recordCongestion[i]) {
totalCongested = totalCongested + 1;

}

if(totalCongested>=k) {
return true;
}

// Not congested.

return false;
}
}
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