
State Machine Replication Scalability Made Simple
Chrysoula Stathakopoulou
IBM Research Europe - Zurich

ETH - Zurich

Matej Pavlovic*

Protocol Labs
Marko Vukolić†

Protocol Labs

Abstract
Consensus, state machine replication (SMR) and total order
broadcast (TOB) protocols are notorious for being poorly
scalable with the number of participating nodes. Despite the
recent race to reduce overall message complexity of leader-
driven SMR/TOB protocols, scalability remains poor and the
throughput is typically inversely proportional to the number
of nodes. We present Insanely Scalable State Machine Repli-
cation, a generic construction to turn leader-driven protocols
into scalable multi-leader ones. For our scalable SMR con-
struction we use a novel primitive called Sequenced (Total Or-
der) Broadcast (SB) which we wrap around PBFT, HotStuff
and Raft leader-driven protocols to make them scale. Our
construction is general enough to accommodate most leader-
driven ordering protocols (BFT or CFT) and make them scale.
Our implementation improves the peak throughput of PBFT,
HotStuff, and Raft by 37x, 56x, and 55x, respectively, at a
scale of 128 nodes.

CCS Concepts: • Computer systems organization→ De-
pendable and fault-tolerant systems and networks.

Keywords: Byzantine fault tolerence, state machine replica-
tion, consensus, scalability

ACM Reference Format:
Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić.
2022. State Machine Replication Scalability Made Simple. In Seven-
teenth European Conference on Computer Systems (EuroSys ’22),
April 5–8, 2022, RENNES, France. ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3492321.3519579

1 Introduction
Considerable research effort has recently been dedicated
to scaling state-machine replication (SMR) and total-order

*Work done while at IBM Research Europe - Zurich
†Work done while at IBM Research Europe - Zurich

EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9162-7/22/04.
https://doi.org/10.1145/3492321.3519579

broadcast (TOB) or consensus protocols, fundamental primi-
tives in distributed computing. By scaling, we mean maintain-
ing high throughput and low latency despite a growing num-
ber of nodes (replicas) 𝑛. Driven by the needs of blockchain
systems, particular focus lies on deterministic Byzantine fault-
tolerant (BFT) protocols in the eventually or partially syn-
chronous model.

In this model, the classical Dolev/Reischuk (DR) [14]
lower bound requires Ω(𝑛2) worst case message complex-
ity, which was a focal complexity metric of many subsequent
protocols including recent HotStuff [33]. However, we claim
message complexity to be a rather poor scalability metric,
demonstrated by the fact that HotStuff and other leader-driven
protocols scale inversely proportionally to the number of
nodes, despite some of them matching the DR lower bound.
This is because in leader-driven protocols, the leader has at
least 𝑂 (𝑛) bits to send, even in the common case, yielding
𝑛−1 throughput scalability.

A recent effort to overcome the single leader bottleneck
by allowing multiple parallel leaders (Mir-BFT [31]) in the
classical PBFT protocol [10] demonstrates high scalability
in practice. Despite certain advantages of PBFT, e.g., be-
ing highly parallelizable and designed not to require signa-
tures on protocol messages, among the many (existing and
future) TOB solutions, there are none that fit all use cases.
HotStuff [33] is the first protocol with linear message com-
plexity both in the common case and in leader replacement,
making it suitable for highly asynchronous or faulty networks.
On the other hand, other protocols, e.g., Aliph/Chain [19],
have optimal throughput when failures are not expected to oc-
cur often. Finally, crash fault-tolerant (CFT) protocols such as
Raft [28] and Paxos [24] tolerate a larger number of (benign)
failures than BFT protocols for the same number of nodes.

Our work takes the Mir-BFT effort one step further, in-
troducing Insanely Scalable SMR, hereinafter referred to as
ISS, the first modular framework to make leader-driven TOB
protocols scale. ISS is a classic SMR system that establishes
a total order of client requests with typical liveness and safety
properties, applicable to any replicated service, such as re-
silient databases or a blockchain ordering layer (e.g., as in
Hyperledger Fabric [3]).

Notably, and unlike previous efforts [31][6], ISS achieves
scalability without requiring a primary node to periodically
decide on the protocol configuration. ISS achieves this by
introducing a novel abstraction, Sequenced Broadcast (SB),
which requires each instance of an ordering protocol to termi-
nate after delivering a finite number of messages. This allows

17

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3492321.3519579
https://doi.org/10.1145/3492321.3519579
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://www.acm.org/publications/policies/artifact-review-and-badging-current#functional

EuroSys ’22, April 5–8, 2022, RENNES, France Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić

nodes in ISS to decide on the configuration independently
and deterministically, without requiring additional communi-
cation and without relying on a single primary node. This in
turn allows for more flexible and fair leader selection policies.
Moreover, it guarantees better resilience against an adaptive
adversary that can corrupt the primary node, which changes
slowly and can be known in advance with a deterministic
round robin rotation [31][6].

ISS implements SMR by multiplexing multiple instances
of SB which operate concurrently on a partition of the do-
main of client requests. We carefully select the partition to
maintain safety and liveness, as well as to prevent redundant
data duplication, which has been shown to be detrimental
to performance [31]. This is qualitatively better than related
modular efforts [20, 27] which do not provide careful par-
titioning and load balancing and hence cannot achieve the
same scalability and robustness at the same time.

ISS maintains a contiguous log of (batches of) client re-
quests at each node. Each position in the log corresponds
to a unique sequence number and ISS agrees on the assign-
ment of a unique request batch to each sequence number. Our
goal is to introduce as much parallelism as possible in as-
signing batches to sequence numbers while avoiding request
duplication, i.e., assigning the same request to more than
one sequence number. To this end, ISS subdivides the log
into non-overlapping segments. Each segment, representing a
subset of the log’s sequence numbers, corresponds to an inde-
pendent instance of SB that has its own leader and executes
concurrently with other SB instances. The SB abstraction,
moreover, facilitates the reasoning about multiplexing the
outputs of multiple instances into a single log, while staying
very close to classic definitions of broadcast and thus being
easily implementable by existing algorithms.

To prevent the leaders of two different segments from con-
currently proposing the same request, and thus wasting re-
sources, while also preventing malicious leaders from cen-
soring (i.e., not proposing) certain requests, we adopt and
generalize the rotating bucketization of the request space
introduced by Mir-BFT [31]. ISS assigns a different bucket—
subset of client requests—to each segment. No bucket is
assigned to more than one segment at a time and each request
maps (through a hash function) to exactly one bucket. ISS
periodically changes the bucket assignment, such that each
bucket is guaranteed to eventually be assigned to a segment
with a correct leader.

To maintain the invariant of one bucket being assigned
to one segment, all buckets need to be re-assigned at the
same time. ISS therefore uses finite segments that it groups
into epochs. An epoch is a union of multiple segments that
forms a contiguous sub-sequence of the log. After all log
positions within an epoch have been assigned request batches,
and thus no requests are “in-flight”, ISS advances to the next
epoch, meaning that it starts processing a new set of segments
forming the next portion of the log.

We implement and deploy ISS on a wide area network
(WAN) spanning 16 different locations spread around the
world, demonstrating ISSs performance using two different
BFT protocols (PBFT[10] and HotStuff[33]) and one CFT
protocol (Raft[28]). On 128 nodes ISS improves the perfor-
mance of the single leader counterpart protocols, PBFT, Hot-
Stuff, and Raft, by 37x, 56x, and 55x, respectively.

The rest of this paper is organized as follows. Section 2
presents the theoretical foundation of our work. It models
the systems we study (Section 2.1), introduces the SB ab-
straction (Section 2.2) and describes how we multiplex SB
instances with ISS (Sections 2.3 and 2.4). Sections 3 and 4
respectively describe the details of ISS and its implementa-
tion. In Section 5 we prove that multiplexing SB instances
with ISS implements SMR and in Section 6 we evaluate the
performance of ISS. In Section 7 we discuss related work. We
conclude in Section 8.

2 Theoretical Foundations
2.1 System Model
We assume a set N of node processes with |N | = 𝑛. At
most 𝑓 of the nodes in N can fail. We further assume a set
C of client processes of arbitrary size, any of which can be
faulty. Each process is identified by its public key, provided
by a public key infrastructure. Unless mentioned otherwise,
we assume Byzantine, i.e., arbitrary, faults. Therefore, we
require 𝑛 ≥ 3𝑓 + 1. We further assume that nodes in N
are computationally bounded and cannot subvert standard
cryptographic primitives.

Processes communicate through authenticated point-to-
point channels. We assume a partially synchronous network [15]
such that the communication between any pair of correct pro-
cesses is asynchronous before an unknown time 𝐺𝑆𝑇 , when
the communication becomes synchronous.

Nodes in N implement a state machine replication (SMR)
service to clients in C. To broadcast request 𝑟 , a client 𝑐 trig-
gers an ⟨SMR-CAST |𝑟 ⟩ event. A client request is a tuple
𝑟 = (𝑜, 𝑖𝑑), where 𝑜 is the request payload, e.g., some oper-
ation to be executed by some application, and 𝑖𝑑 a unique
request identifier. The request identifier is a tuple 𝑖𝑑 = (𝑡, 𝑐)
where 𝑡 is a logical timestamp and 𝑐 a client identifier, e.g., a
client public key. Two client requests 𝑟 = (𝑜, 𝑖𝑑), 𝑟 ′ = (𝑜 ′, 𝑖𝑑 ′)
are considered equal, we write 𝑟 = 𝑟 ′ and we refer to them as
duplicates, if and only if 𝑜 = 𝑜 ′ ∧ 𝑖𝑑 = 𝑖𝑑 ′.

Nodes assign a unique sequence number 𝑠𝑛 to 𝑟 and even-
tually output an ⟨SMR-DELIVER |𝑠𝑛, 𝑟 ⟩ event such that the
following properties hold:
SMR1 Integrity: If a correct node delivers (𝑠𝑛, 𝑟), where
𝑟 .𝑖𝑑 .𝑐 is a correct client’s identity, then client 𝑐 broadcast 𝑟 .
SMR2 Agreement: If two correct nodes deliver, respectively,
(𝑠𝑛, 𝑟) and (𝑠𝑛, 𝑟 ′), then 𝑟 = 𝑟 ′.
SMR3 Totality: If a correct node delivers request (𝑠𝑛, 𝑟),
then every correct node eventually delivers (𝑠𝑛, 𝑟).

18

State Machine Replication Scalability Made Simple EuroSys ’22, April 5–8, 2022, RENNES, France

SMR4 Liveness: If a correct client broadcasts request 𝑟 , then
some correct node eventually delivers (𝑠𝑛, 𝑟).

2.2 Sequenced Broadcast (SB)
Sequenced Broadcast (SB) is a variant of Byzantine total
order broadcast [8] with explicit sequence numbers and an
explicit set of allowed messages.

SB is instantiated with a failure detector instance as a pa-
rameter. We assume an eventually strong failure detector in
an environment with Byzantine faults denoted as ^𝑆 (𝑏𝑧), as
defined by Malkhi and Reiter [25].

The failure detector D of the class ^𝑆 (𝑏𝑧) detects quiet
nodes. Intuitively, a quiet node is the equivalent to a crashed
node in the BFT model, accounting for non-crash faults that
are indistinguishable from crashes. For the exact definition
we refer the reader to Malkhi and Reiter’s work [25].

A failure detector of the ^𝑆 (𝑏𝑧) class guarantees the fol-
lowing two properties:
Strong Completeness: There is a time after which every
quiet node is permanently suspected by every correct node.
Eventual Weak Accuracy: There is a time after which some
correct node is never suspected by any correct node.

We can now define Sequenced Broadcast as follows.
Let 𝑀 be a set of messages and 𝑆 ⊆ N a set of sequence

numbers. Only one sender node 𝜎 ∈ N can broadcast mes-
sages (we hereon write sb-cast) by invoking ⟨SB-CAST |𝑠𝑛,𝑚⟩
with (𝑠𝑛,𝑚) ∈ 𝑆 ×𝑀 . ⟨SB-DELIVER |𝑠𝑛,𝑚⟩ is triggered at
a correct node 𝑝 when 𝑝 delivers (we hereon write sb-delivers)
message𝑚 with sequence number 𝑠𝑛.

If a correct node suspects that 𝜎 is quiet, all correct nodes
are allowed to sb-deliver a special nil value 𝑚 = ⊥ ∉ 𝑀 . If,
however, 𝜎 is trusted by all correct nodes, all correct nodes
are guaranteed to sb-deliver non-nil messages𝑚 ≠ ⊥.

SB is explicitly initialized with an ⟨SB-INIT⟩ event. We
assume a failure detector list at each correct node which is
initially empty. It is only after the invocation of ⟨SB-INIT⟩
that suspecting 𝜎 can lead to the ⊥ value being delivered.
An instance of 𝑆𝐵(𝜎, 𝑆,𝑀, 𝐷) has the following properties:
SB1 Integrity: If a correct node sb-delivers (𝑠𝑛,𝑚) with
𝑚 ≠ ⊥ and 𝜎 is correct then 𝜎 sb-cast (𝑠𝑛,𝑚).
SB2 Agreement: If two correct nodes sb-deliver, respectively,
(𝑠𝑛,𝑚) and (𝑠𝑛,𝑚′), then𝑚 =𝑚′.
SB3 Termination: If 𝑝 is correct, then 𝑝 eventually sb-delivers
a message for every sequence number in 𝑆 , i.e., ∀𝑠𝑛 ∈ 𝑆 :
∃𝑚 ∈ 𝑀 ∪ {⊥} such that 𝑝 sb-delivers (𝑠𝑛,𝑚).
SB4 Eventual Progress: If some correct node sb-delivers
(𝑠𝑛,⊥) for some 𝑠𝑛 ∈ 𝑆 , then some correct node suspected 𝜎

after having invoked ⟨SB-INIT⟩.
The key difference from TOB is that SB is invoked for an

explicit set of sequence numbers 𝑆 and messages 𝑀 . More-
over, SB is invoked with a ^𝑆 (𝑏𝑧) failure detector and correct
nodes deliver messages from set 𝑀 and the special ⊥ value
such that SB terminates for all sequence numbers. The latter

is guaranteed by the ⊥ value and ^𝑆 (𝑏𝑧) completeness; if 𝜎
is quiet it will eventually be suspected by all correct nodes.

Our technical report[32] shows that SB is implementable
with consensus, Byzantine reliable broadcast (BRB), and
^𝑆 (𝑏𝑧). On a high level, the dedicated sender 𝜎 reliably
broadcasts a message for each sequence number in 𝑆 and
all correct nodes run consensus for each sequence number in
𝑆 to decide if they can deliver a message broadcast by 𝜎 or if
𝜎 is quiet. In the first case they sb-deliver the message and
in the second case they sb-deliver ⊥. Since both BRB and
^𝑆 (𝑏𝑧) are implementable with consensus, SB can also be
implemented with consensus.

2.3 Multiplexing Instances of SB with ISS
ISS multiplexes instances of SB to implement SMR. Each
node maintains a log of ordered messages which correspond
to batches of client requests. Each position in the log corre-
sponds to a sequence number signifying the offset from the
start of the log. The log is partitioned in subsets of sequence
numbers called segments. Each segment corresponds to one
instance of SB. Nodes obtain requests from clients and, af-
ter mapping them to a log position using an instance of SB,
deliver them together with the assigned sequence number.

ISS proceeds in epochs identified by monotonically increas-
ing integer epoch numbers. Each epoch 𝑒 is associated with
a set of segments. The union of those segments forms a set
𝑆𝑛(𝑒) of consecutive sequence numbers. Epoch 0 (the first
epoch) starts with sequence number 0. The mapping of se-
quence numbers to epochs is a function known to all nodes
with the only requirements being that it is monotonically in-
creasing and that there are no gaps between epochs. More
formally, 𝑚𝑎𝑥 (𝑆𝑛(𝑒)) + 1 = 𝑚𝑖𝑛(𝑆𝑛(𝑒 + 1)). Epoch length
can be arbitrary, as long as it is finite. For simplicity, we use
a fixed, constant epoch length.

0 11 12 23 24

Epoch 0 Epoch 1 Epoch 2
(3 segments) (2 segments) (3 segments)

Seg(0, 0) Seg(0, 1) Seg(0, 2) Seg(1, 0) Seg(1, 1)

Figure 1. Log partitioned in epochs and segments. In this
particular example, each epoch is 12 sequence numbers long.
The first epoch has 3 segments while the second epoch only
has 2, i.e., |𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (0) | = 3, |𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (1) | = 2,𝑚𝑎𝑥 (𝑆𝑛(1)) =
23 and𝑚𝑎𝑥 (𝑆𝑒𝑔(0, 1)) = 10.

Epochs are processed sequentially, i.e., ISS first agrees on
the assignment of request batches to all sequence numbers in
𝑆𝑛(𝑒) before starting to agree on the assignment of request
batches to sequence numbers in 𝑆𝑛(𝑒 + 1).

Within an epoch, however, ISS processes segments in paral-
lel. Multiple leaders, selected according to a leader selection

19

EuroSys ’22, April 5–8, 2022, RENNES, France Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić

policy, concurrently propose batches of requests for differ-
ent sequence numbers in 𝑆𝑛(𝑒). To this end, ISS assigns a
different leader node to each segment in epoch 𝑒. We re-
fer to the set of all nodes acting as leaders in an epoch as
the leaderset of the epoch. The numbers of leaders and seg-
ments in each epoch always match. We denote by 𝑆𝑒𝑔(𝑒, 𝑖)
the subset of 𝑆𝑛(𝑒) for which node 𝑖 is the leader. This means
that node 𝑖 is responsible for proposing request batches to se-
quence numbers in 𝑆𝑒𝑔(𝑒, 𝑖). No node other than 𝑖 can propose
batches for sequence numbers in 𝑆𝑒𝑔(𝑒, 𝑖). Let 𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (𝑒) be
nodes that are leaders in epoch 𝑒. We associate sequence
numbers with segments in a round-robin way, namely, for
0 ≤ 𝑖 < |𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (𝑒) |,

𝑆𝑒𝑔(𝑒, 𝑖) ⊆ 𝑆𝑛(𝑒) = {𝑠𝑛 ∈ 𝑆𝑛(𝑒) |𝑖 ≡ 𝑠𝑛 mod |𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (𝑒) |}

An example with |𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (0) | = 3 and |𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (1) | = 2 is
illustrated in Figure 1.

In principle, any assignment of sequence numbers to seg-
ments is possible and leads to a correct algorithm. We choose
the round-robin assignment because it uniformly distributes
sequence numbers among instances. Therefore, in a fault-free
execution, it is the least likely to create “gaps” in the log,
which minimizes the end-to-end request latency.

In order not to waste resources on duplicate requests, we
require that a request cannot be part of two batches assigned
to two different sequence numbers. We enforce this at three
levels: (1) within a segment, (2) across segments in the same
epoch, and (3) across epochs.

Within a segment, we rely on the fact that a correct leader
will propose (and a correct node, as follower, will accept)
only batches with disjoint sets of requests for each sequence
number within a segment. Across segments, we partition the
set of all possible requests into buckets using a hash function
and enforce that only requests from different buckets can be
used for different segments within an epoch. We denote by
B the set of all possible buckets. We assign a subset of B to
each segment, such that each bucket is assigned to exactly one
segment in each epoch. We denote by 𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒, 𝑖) ⊆ B the
set of buckets assigned to leader 𝑖 in epoch 𝑒. For simplicity,
we say that we assign a bucket to a leader 𝑖 when assigning a
bucket to a segment for which 𝑖 is the leader. Across epochs,
ISS prevents duplication by only allowing a node to propose
a request batch in a new epoch once it has added all batches
from the previous epoch to the log. If a request has been
delivered in a batch in the previous epoch, a correct leader
will not propose it again (see also Section 3.3). Also, a correct
node, as follower, will not accept a proposal which includes a
previously delivered request.

In summary, a segment of epoch 𝑒 with leader 𝑖 is defined
by the tuple (𝑒, 𝑖, 𝑆𝑒𝑔(𝑒, 𝑖), 𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒, 𝑖)). For a set of buckets
𝐵 ⊆ B , we denote with 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 (𝐵) the set of all possible
batches consisting of valid (we define request validity pre-
cisely later in Section 3.7) requests that map to some bucket
in 𝐵. For each segment (𝑒, 𝑖, 𝑆𝑒𝑔(𝑒, 𝑖), 𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒, 𝑖)), we use

an instance 𝑆𝐵(𝑖, 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 (𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒, 𝑖)), 𝑆𝑒𝑔(𝑒, 𝑖)), 𝐷) of Se-
quenced Broadcast where 𝐷 is a failure detector. We say
that leader 𝑖 proposes a batch 𝑏 ∈ 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 (𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒, 𝑖)) for
sequence number 𝑠𝑛 ∈ 𝑆𝑒𝑔(𝑒, 𝑖) if 𝑖 sb-casts 𝑏 with a sequence
number 𝑠𝑛 at the corresponding instance of SB. A batch 𝑏

commits with 𝑠𝑛 (and is added to the log at the corresponding
position) at node 𝑛 when, for the corresponding instance of
SB, 𝑛 sb-delivers 𝑏 with 𝑠𝑛.

During epoch 𝑒, all nodes that are leaders in 𝑒 simultane-
ously propose batches for sequence numbers in their corre-
sponding segments. ISS multiplexes all segments into the
single common log as shown in Figure 1. Each node thus exe-
cutes |𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (𝑒) | SB instances simultaneously, while being
a leader for at most one of them.

Epoch 𝑒 ends and epoch (𝑒 + 1) starts when all sequence
numbers in 𝑆𝑛(𝑒) have been committed. Nodes keep the old
instances active until all corresponding sequence numbers
become part of a stable checkpoint. This is necessary for
ensuring totality (even for slow nodes which might not have
actively taken part in the agreement).

2.4 Assigning Buckets to Segments
ISS partitions the request hash space into buckets which it
assigns to leaders/segments and changes this bucket assign-
ment at epoch transitions. At any point in time, a leader can
assign sequence numbers only to requests from its assigned
buckets. This approach was first used in Mir-BFT [31] to
counter request duplication and censoring attacks.

During an epoch, the assignment of buckets to leaders is
fixed. To ensure liveness, each bucket must repeatedly be
assigned to a correct leader. To this end, ISS re-assigns the
buckets on every epoch transition as follows.

Node 0

Node 1

Node 2

Node 3

(leader)

(leader)

extraBuckets(1)

1

2

5

6

← initBuckets(1, 2)

← initBuckets(1, 3)

re-distribute

Buckets(1, 0)

Buckets(1, 1)

3

0

7

4

← initBuckets(1, 0)

← initBuckets(1, 1)

extraBuckets(1)

1

2

5

6

Figure 2. Example assignment of 8 buckets to 2 leaders in a
system with 4 nodes in epoch 1.

For epoch 𝑒, we start by assigning an initial set of buck-
ets to each node (leader or not) in a round-robin way. Let
𝑖𝑛𝑖𝑡𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒, 𝑖) ⊆ B be the set of buckets initially assigned
to each node 𝑖, 0 ≤ 𝑖 < 𝑛 in epoch 𝑒. We consider the buckets
in B to be numbered, with each bucket having an integer
bucket number 𝑏 ∈ {0, . . . , |B| − 1}. In the following we refer
to buckets using 𝑏.

𝑖𝑛𝑖𝑡𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒, 𝑖) = {𝑏 ∈ B | (𝑏 + 𝑒) ≡ 𝑖 mod 𝑛}

20

State Machine Replication Scalability Made Simple EuroSys ’22, April 5–8, 2022, RENNES, France

However, not all nodes belong to 𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (𝑒). Let 𝑒𝑥𝑡𝑟𝑎𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒)
be the set of buckets initially assigned to non-leaders.

𝑒𝑥𝑡𝑟𝑎𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒) = {𝑏 ∈ B | ∃𝑖 : 𝑖 ∉ 𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (𝑒)
∧ 𝑏 ∈ 𝑖𝑛𝑖𝑡𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒, 𝑖)}

We must re-distribute those extra buckets to the leaders of
epoch 𝑒. We do this in a round robin way as well. Let 𝑙 (𝑒, 𝑘),
0 ≤ 𝑘 < |𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (𝑒) | be the 𝑘-th leader (in lexicographic
order) in epoch 𝑒. The 𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒, 𝑙 (𝑒, 𝑘)) of the 𝑘-th leader
in 𝑒 are thus defined as follows.

𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒, 𝑙 (𝑒, 𝑘)) = 𝑖𝑛𝑖𝑡𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒, 𝑙 (𝑒, 𝑘)) ∪
{𝑏 ∈ 𝑒𝑥𝑡𝑟𝑎𝐵𝑢𝑐𝑘𝑒𝑡𝑠 (𝑒) |
(𝑏 + 𝑒) ≡ 𝑘 mod |𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (𝑒) |}

An example bucket assignment is illustrated in Figure 2.
With this approach, all buckets are assigned to leaders

and every node is eventually assigned every bucket at least
through the initial bucket assignment. ISS ensures liveness as
long as, in an infinite execution, there is a correct node that
(1) eventually stops being suspected forever by every correct
node, and (2) is assigned each bucket infinitely often. (1) is
satisfied by the properties of the eventually strong failure
detector. (2) is satisfied by the bucket re-assignment and the
leader selection policy described in Section 3.4.

Figure 3 shows how ISS multiplexes SB instances to build
a totally ordered log.

ISS

SB

SB-CAST

SB-DELIVER

PBFT /
HotStuff /
Raft / …

SMR-BCAST SMR-DELIVER

Log: b0 b1 ⊥ b3 b4 b5
. . .

Buckets

SB
PBFT /

HotStuff /
Raft / …

SB
PBFT /

HotStuff /
Raft / …

. . .

SB-DELIVER
SB-DELIVER

SB-CAST SB-CAST

requests requests

request batches

Figure 3. SB invocation in ISS.

3 ISS Algorithm Details
In this section we present the ISS algorithm in detail. The
main high-level algorithm that produces a totally ordered log
is described in Algorithm 1. For better readability, certain
auxiliary functions and the functions related to epoch ini-
tialization are presented separately in Algorithms 2 and 3,
respectively. The notation ⟨𝑖, 𝑒 |𝑎𝑟𝑔𝑠⟩ corresponds to an event
𝑒 of instance 𝑖 with arguments 𝑎𝑟𝑔𝑠.

As described in the previous sections, ISS proceeds in
epochs, each epoch multiplexing multiple segments into a
final totally ordered log. We start with epoch number 0 (line

16) and an empty log (line 21). All buckets are initially empty
(line 25). Whenever a client submits a new request (line 30),
ISS adds the request to the corresponding bucket (line 32).

We assume access across all epochs to a module 𝐷 that
implements an eventually strong failure detector (Section 2.2).

Algorithm 1 Main ISS algorithm for node 𝑝
1: Implements:
2: State Machine Replication, instance smr
3:
4: Uses:
5: Sequenced Broadcast, instance sb(𝜎 , 𝑆 , 𝑀 , 𝑑) (multiple instances)
6: with sender 𝜎 , sequence numbers 𝑆 , messages 𝑀 , failure detector instance 𝑑
7: Eventually Strong Failure Detector instance 𝐷
8:
9: Parameters:

10: numBuckets
11: batchTimeout
12: epochLength
13: maxBatchSize
14:
15: upon 𝑖𝑛𝑖𝑡 () do
16: currentEpoch← 0
17: segments← ∅
18: firstUndelivered← 0
19: totalDelivered← 0
20: for 𝑠𝑛 ∈ N do
21: log[𝑠𝑛]← 𝑛𝑜𝑛𝑒

22: proposed[𝑠𝑛]← 𝑛𝑜𝑛𝑒

23: end for
24: for 0 ≤ 𝑏 < 𝑛𝑢𝑚𝐵𝑢𝑐𝑘𝑒𝑡𝑠 do
25: buckets[b]← empty bucket
26: end for
27: initEpoch(0)
28: runEpoch(0)
29:
30: upon event ⟨𝑠𝑚𝑟, SMR-CAST |𝑟𝑒𝑞⟩ do
31: if valid(𝑟𝑒𝑞) then
32: buckets[hash(𝑟𝑒𝑞)].add(𝑟𝑒𝑞)
33: end if
34:
35: function runEpoch(𝑒) :
36: for 𝑠𝑛 ∈ 𝑠𝑒𝑞𝑁𝑟𝑠 (𝑒) with 𝑠𝑒𝑔𝑂𝑓 (𝑠𝑛) .𝑙𝑒𝑎𝑑𝑒𝑟 = 𝑝 do
37: propose(sn)
38: end for
39:
40: upon event ⟨𝑠𝑒𝑔𝑂𝑓 (𝑠𝑛) .𝑆𝐵, SB-DELIVER | (𝑠𝑛,𝑏𝑎𝑡𝑐ℎ) ⟩ do
41: log[𝑠𝑛]← 𝑏𝑎𝑡𝑐ℎ

42: if 𝑏𝑎𝑡𝑐ℎ ≠ ⊥ then
43: for 𝑟𝑒𝑞 ∈ 𝑏𝑎𝑡𝑐ℎ do
44: buckets[hash(𝑟𝑒𝑞)].remove(𝑟𝑒𝑞)
45: end for
46: else if proposed[𝑠𝑛] ≠ 𝑛𝑜𝑛𝑒 then
47: resurrectRequests(proposed[𝑠𝑛])
48: end if
49:
50: upon ∀𝑠𝑛 ∈ 𝑠𝑒𝑞𝑁𝑟𝑠 (currentEpoch) : log[𝑠𝑛] ≠ 𝑛𝑜𝑛𝑒 do
51: initEpoch(currentEpoch + 1)
52: runEpoch(currentEpoch + 1)
53:
54: upon 𝑙𝑜𝑔 [firstUndelivered] ≠ 𝑛𝑜𝑛𝑒 do
55: deliver(𝑠𝑛)
56: firstUndelivered← 𝑠𝑛 + 1
57:

3.1 Epoch Initialization
At the start of each epoch 𝑒, ISS: (1) calculates 𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (𝑒),
the set of nodes that will act as leaders in 𝑒, based on the
used leader selection policy (line 98), (2) for each node 𝑙 in
𝐿𝑒𝑎𝑑𝑒𝑟𝑠 (𝑒), creates a new segment with leader 𝑙 (lines 100
and 101), (3) assigns all sequence numbers 𝑆𝑛(𝑒) of epoch

21

EuroSys ’22, April 5–8, 2022, RENNES, France Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić

Algorithm 2 Auxiliary functions
58: function segOf (𝑠𝑛) :
59: return 𝑠𝑒𝑔 ∈ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 : 𝑠𝑛 ∈ 𝑠𝑒𝑔.𝑠𝑒𝑞𝑁𝑟𝑠

60:
61: function seqNrs(𝑒) :
62: return {𝑖 ∈ N |
63: 𝑒 · 𝑒𝑝𝑜𝑐ℎ𝐿𝑒𝑛𝑔𝑡ℎ ≤ 𝑖 < 𝑒 · (𝑒𝑝𝑜𝑐ℎ𝐿𝑒𝑛𝑔𝑡ℎ + 1) }
64:
65: function propose(𝑠𝑛) :
66: wait until segments[sn].batchReady()
67: or batchTimeout
68:
69: batch← cutBatch(segOf(𝑠𝑛).buckets)
70: trigger ⟨seg.SB, SB-CAST |𝑠𝑛,𝑏𝑎𝑡𝑐ℎ⟩
71: proposed[𝑠𝑛]← batch
72: if 𝑏𝑎𝑡𝑐ℎ ≠ ⊥ then
73: for 𝑟𝑒𝑞 ∈ 𝑏𝑎𝑡𝑐ℎ do
74: buckets[hash(𝑟𝑒𝑞)].remove(𝑟𝑒𝑞)
75: end for
76: end if
77:
78: function deliver(𝑠𝑛) :
79: 𝑏𝑎𝑡𝑐ℎ ← log[𝑠𝑛]
80: if 𝑏𝑎𝑡𝑐ℎ ≠ ⊥ then
81: for 𝑟𝑒𝑞 ∈ 𝑏𝑎𝑡𝑐ℎ do
82: trigger ⟨𝑠𝑚𝑟, SMR-DELIVER |𝑟𝑒𝑞, totalDelivered⟩
83: totalDelivered← totalDelivered +1
84: end for
85: end if
86:
87: function cutBatch(B) :
88: return a batch of the𝑚𝑎𝑥𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 oldest requests in B
89:
90: function resurrectRequests(𝑏𝑎𝑡𝑐ℎ) :
91: for 𝑟𝑒𝑞 ∈ 𝑏𝑎𝑡𝑐ℎ do
92: buckets[hash(req)].add(req)
93: end for
94:

𝑒 in a round-robin way to all created segments (line 103),
(4) assigns buckets to the created segments as described in
Section 2.4 (line 104), and (5) creates an instance of SB for
each created segment (line 106).

Algorithm 3 Epoch initialization
95: function initEpoch(𝑒) :
96: currentEpoch← 𝑒

97:
98: leaders← leader_selection_policy(𝑒)
99: for 0 ≤ 𝑙 < |𝑙𝑒𝑎𝑑𝑒𝑟𝑠 | ∈ do
100: seg← new segment
101: seg.leader← leaders[𝑙]
102: seg.seqNrs← {𝑠𝑛 ∈ 𝑠𝑒𝑞𝑁𝑟𝑠 (𝑒) |
103: 𝑠𝑛 ≡ 𝑙 mod |𝑙𝑒𝑎𝑑𝑒𝑟𝑠 | }
104: seg.buckets← Buckets(𝑒, 𝑙𝑒𝑎𝑑𝑒𝑟𝑠 [𝑙])
105: seg.SB← sb (leaders[l], batches(seg.buckets), seg.seqNrs, D)
106: trigger ⟨𝑠𝑒𝑔.𝑆𝐵, SB-INIT⟩
107: segments← segments ∪ {seg}
108: end for
109:
110: function Buckets(𝑒, 𝑖) :
111: for 𝑛 ∈ N do
112: initBuckets[n]← {𝑏 < 𝑛𝑢𝑚𝐵𝑢𝑐𝑘𝑒𝑡𝑠 |
113: (𝑒 + 𝑏) ≡ 𝑛 mod |N | }
114: end for
115: leaders← epLeaders_POLICY(𝑒)
116: extraBuckets← {𝑏 : ∃𝑛 |
117: 𝑛 ∉ 𝑙𝑒𝑎𝑑𝑒𝑟𝑠 ∧ 𝑏 ∈ 𝑖𝑛𝑖𝑡𝐵𝑢𝑐𝑘𝑒𝑡𝑠 [𝑛] }
118: return 𝑖𝑛𝑖𝑡𝐵𝑢𝑐𝑘𝑒𝑡𝑠 [𝑖] ∪ {𝑏 ∈ 𝑒𝑥𝑡𝑟𝑎𝐵𝑢𝑐𝑘𝑒𝑡𝑠 |
119: (𝑒 + 𝑏) ≡ (index of 𝑖 in 𝑙𝑒𝑎𝑑𝑒𝑟𝑠) mod |𝑙𝑒𝑎𝑑𝑒𝑟𝑠 | }
120:

3.2 Ordering Request Batches
ISS orders requests in batches, a common technique which
allows requests to be handled in parallel, amortizes the pro-
cessing cost of protocol messages, and, thereby, improves
throughput. During an epoch, every node 𝑙 that is the leader
of a segment 𝑠 proposes request batches for sequence numbers
assigned to 𝑠 (line 37). 𝑙 does so by sb-casting the batches
using the instance of SB associated with 𝑠. Every node then
inserts the sb-delivered (sequence number, batch) pairs at the
corresponding positions in its copy of the log (line 41). We
say the node commits the batch with the corresponding se-
quence number since, once inserted to the log, the assignment
of a batch to a sequence number is final.

Proposing Batches. Each node maintains local data struc-
tures of buckets queues, which store the received and not yet
proposed or delivered requests corresponding to the respec-
tive bucket. To propose a request batch for sequence number
𝑠𝑛, 𝑙 first constructs the batch using requests in the bucket
queues corresponding to the buckets assigned to 𝑠. To imple-
ment efficient request batching while preserving low latency,
𝑙 waits until at least one of the following conditions is ful-
filled: (1) the bucket queues assigned to 𝑠 contain enough
requests (more than a predefined 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒) (line 67), or (2)
a predefined time elapses since the last proposal (line 68).
Under low load, this condition sets an upper bound on the
pending1 latency of requests waiting to be proposed, even if
the batch is filling slowly.
𝑙 then constructs a 𝑏𝑎𝑡𝑐ℎ using up to 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 requests

(line 69), removes those requests from their bucket queues
and proposes the batch by invoking SB-CAST(𝑠𝑛, 𝑏𝑎𝑡𝑐ℎ) on
the SB instance associated with 𝑠 (line 70).

Every leader also keeps track of the values it proposed for
each sequence number (line 71). This, as we explain later, is
important in the case of asynchrony.

Assembling the Final Log. Whenever any instance of
SB (belonging to any segment) delivers a value associated
with a sequence number (line 40) at some node 𝑛, 𝑛 inserts
the delivered value at position 𝑠𝑛 of the log (line 41). If a
request batch ≠ ⊥ has been delivered (line 42), 𝑛 removes the
contained requests from their corresponding bucket queues
(line 44) to avoid proposing them again in a later epoch.

Note that bucket queues are local data structures at each
node, and thus each node manages its bucket queues locally.
Nodes add all requests they obtain from clients to their local
bucket queues, but only propose batches constructed from
the queues corresponding to the buckets assigned to their
segments. Consequently, a node 𝑛 delivers batches contain-
ing requests mapping to other buckets than those 𝑛 uses for
proposing. Therefore, to avoid request duplication across
epochs, each node must remove all delivered requests from
its local bucket queues.

1Latency from the moment a request is received until it is added in a batch.

22

State Machine Replication Scalability Made Simple EuroSys ’22, April 5–8, 2022, RENNES, France

If the special value ⊥ has been delivered by SB and, at
the same time, 𝑛 itself had been the leader proposing a batch
for 𝑠𝑛 (line 46), 𝑛 “resurrects” all requests in the batch it had
proposed (line 47) by returning them to their corresponding
bucket queues (line 92). This scenario can appear in the case
of asynchrony / partitions, where a correct leader is suspected
as faulty after having proposed a batch. Such a leader must
return the unsuccessfully proposed requests in their bucket
queues and, if batches with those requests are not committed
by other nodes in the meantime, retry proposing them in a
later epoch where it is again leader of a segment with those
buckets.

A node considers the ordering of a request finished when
it is part of a committed batch with an assigned sequence
number 𝑠𝑛 and the log contains an entry for each sequence
number 𝑠𝑛′ ≤ 𝑠𝑛.

Each request is delivered with a unique sequence number
𝑠𝑛𝑟 denoting the total order of the request. 𝑠𝑛𝑟 is derived from
the sequence number of the batch in which the request is
delivered and the position of the request in the batch. Let S𝑠𝑛
be the number of requests in a batch delivered with sequence
number 𝑠𝑛 and let 𝑟 be the 𝑘𝑡ℎ request in this batch. For each
such request 𝑟 , ISS outputs ⟨SMR-DELIVER |𝑠𝑛𝑟 , 𝑟 ⟩ where:

𝑠𝑛𝑟 = 𝑘 +
𝑠𝑛−1∑︁
𝑖=0
S𝑖 (1)

3.3 Advancing Epochs
ISS advances from epoch 𝑒 to epoch 𝑒 + 1 when the log
contains an entry for each sequence number in 𝑆𝑛(𝑒) (line 50).
This will eventually happen for each epoch at each correct
node due to SB Termination. Only then does the node start
processing messages related to epoch 𝑒+1 and starts proposing
batches for sequence numbers in 𝑆𝑛(𝑒 + 1) (lines 51 and 52).

Requiring a node to have committed all batches in epoch 𝑒

before proposing batches for 𝑒+1 prevents request duplication
across epochs. When a node transitions from 𝑒 to 𝑒 + 1, no
requests are “in flight”—each request has either already been
committed in 𝑒 or has not yet been proposed in 𝑒 + 1.

3.4 Selecting Epoch Leaders
In order to guarantee that each request 𝑟 submitted by a correct
client is ordered (liveness), we must ensure that, eventually,
there will be a segment in which 𝑟 is committed. As implied
by the specification of SB, this can only be guaranteed if a
correct leader 𝑝 proposes a batch containing 𝑟 and the failure
detector does not suspect 𝑝 until 𝑟 is committed. The choice
of epoch leaders is thus crucial.

ISS selects leaders according to a leader selection policy, a
function known to all nodes that, at the end of each epoch 𝑒,
determines the set of leaders for epoch (𝑒 + 1).

In order to guarantee liveness of the system, the leader
selection policy must ensure, for each bucket 𝑏, that, in an
infinite execution, 𝑏 will be assigned infinitely many times

to a segment with a correct leader that is not suspected by
the failure detector. Weak eventual accuracy (see Section 2.2)
guarantees that there exists such a leader. Different leader
selection policies pose different trade-offs with respect to
performance. For simplicity, we adopt the policy of BFT-
Mencius [27] because it trivially ensures liveness by always
keeping enough correct nodes in the leaderset.

3.5 Checkpointing and State Transfer
ISS implements a simple checkpointing protocol. Every node
𝑖, in each epoch 𝑒, when the log contains an entry for each
sequence number in 𝑆𝑛(𝑒), broadcasts a signed message
⟨CHECKPOINT,𝑚𝑎𝑥 (𝑆𝑛(𝑒)), 𝜇 (𝑒), 𝜎𝑖⟩, where 𝜇 (𝑒) is the
Merkle tree root of the digests of all the batches in the log
with sequence numbers in 𝑆𝑛(𝑒). Upon acquiring a strong
quorum of 2𝑓 + 1 matching CHECKPOINT messages with
a valid signature against the sender node’s public key, node
𝑖 creates a stable checkpoint ⟨STABLE-CHECKPOINT,
𝑚𝑎𝑥 (𝑆𝑛(𝑒)), 𝜋 (𝑒)⟩, where 𝜋 (𝑒) is the set of 2𝑓 + 1 signatures
on the CHECKPOINT messages. At this point, 𝑖 can garbage
collect all segments of epoch 𝑒.

When a node 𝑖 has fallen behind, for example when 𝑖 starts
receiving messages for a future epoch, 𝑖 performs a state
transfer, i.e., it fetches the missing log entries along with their
corresponding stable checkpoints which prove the integrity
of the data.

ISS checkpointing is orthogonal to any checkpointing and
state transfer mechanism pertaining to the SB implementation
because SB instances must terminate independently.

3.6 Membership Reconfiguration
A detailed membership reconfiguration protocol is outside the
scope of this paper. However, we outline a solution. Thanks
to SB 3 (Termination), all correct nodes eventually deliver
a value for each sequence number of an epoch. Moreover,
thanks to SMR 2 (Agreement), all correct nodes assemble
the same log at the end of the epoch. Therefore, the log at
the end of the epoch can be used to deterministically make
decisions for the next epoch, including decisions about nodes
and clients joining/leaving the set of system processes. Such
a decision can be based, for example, on a flagged reconfig-
uration request proposed by a manager process [30] which
becomes part of the log.

3.7 Request Handling
A request 𝑟 = (𝑜, 𝑖𝑑) with payload 𝑝 and identifier 𝑖𝑑 =

(𝑡, 𝑐) sent from a client to a node is wrapped in a signed
message. Our implementation represents the client identifier
𝑟 .𝑖𝑑 .𝑐 with an integer associated with the client’s 𝑐 public key.
The signature is calculated over the request identity 𝑟 .𝑖𝑑 and
payload 𝑟 .𝑜 to guarantee integrity and authenticity.

Similarly to Mir-BFT [31], clients can submit multiple
requests in parallel within a client watermark window, i.e.,
a contiguous set for the per-client request sequence number

23

EuroSys ’22, April 5–8, 2022, RENNES, France Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić

𝑟 .𝑖𝑑 .𝑡 . ISS advances all clients’ watermark widows at the end
of each epoch.

Each correct node, upon receiving a valid request, adds the
request, based on its identifier, to the corresponding bucket
queue. A request is considered valid if: (1) it has a valid
signature (2) the public key corresponds to a client in the
client set 𝐶 of the system, and (3) is within the client water-
marks. Bucket queues are idempotent, i.e., each correct node
adds a request to the corresponding bucket queue exactly
once. Moreover, the bucket queue implementation maintains
a FIFO property to guarantee liveness with the oldest request
always being proposed first.

Requests are uniformly distributed to buckets using modulo
as a hash function. With |B| denoting the total number of
buckets and | | denoting concatenation, each request 𝑟 maps
to a bucket 𝑏 = 𝑟 .𝑖𝑑 .𝑐 | |𝑟 .𝑖𝑑 .𝑡 mod |B|.

We exclude the payload of the request from the bucket
mapping function to prevent malicious clients from biasing
the uniform distribution. In a permissioned system the client
cannot assume different identities and may only bias the out-
come of the hash function by choosing the request sequence
number. However, we limit the available sequence numbers
for each client, and, therefore, their ability to bias the request
distribution, with the client watermarking mechanism.
Request execution. ISS is oblivious to the payload of the
requests for general applicability. Execution is not part of ISS;
however, it can be coupled with any application that requires
a total order of requests. Moreover, request execution against
a state machine is straight-forward. A request, as part of a
batch, is considered part of the log (and can be, therefore,
executed) once all previous batches are added to the log (see
Section 3.2). Therefore, a request can be executed as soon
as it is delivered by ISS. This does not require the epoch, in
which the request is added to the log, to finish.

4 ISS Implementation
We implement ISS in Go, using gRPC for communication
with TLS on nodes with two network interfaces: one for
client-to-node and one for node-to-node communication.

Our implementation is highly concurrent: multiple threads
are handling incoming client requests, verifying request sig-
natures, sending / receiving messages, and executing various
sub-protocols such as checkpointing and fetching missing pro-
tocol state. Each SB instance also executes in its own thread.
A separate thread orchestrates all of the above.

In the rest of this section, we discuss our implementation
of the ordering subprotocols (4.1), the interaction between
ISS and its clients (4.2), and crucial technical aspects for
achieving robustness and high performance (4.3).

4.1 SB Implementation
In this section we discuss (1) how we implement SB with dif-
ferent leader-driven consensus protocols and (2) adaptations
in the leader-driven protocols critical for ISS performance.

All protocol implementations adhere to the following com-
mon design principles:
1.We initialize the protocol such that the the first protocol
leader is the segment leader (dedicated SB sender) and all
other nodes of the system participate as followers.
2. After a leader change, any new leader (including the seg-
ment leader if it becomes leader again), only proposes ⊥
values for any sequence number not initially proposed by the
segment leader.2

3. A follower accepts a proposal only if (a) all requests in
the batch are valid according to Section 3.7, (b) no request
in the batch has previously been proposed in the same epoch
or committed in a previous epoch (c) all requests belong to
the buckets of the segment, and (d) either the segment leader
sb-casts the proposal, or the proposal is ⊥.

4.1.1 PBFT. We follow the PBFT protocol as described by
Castro and Liskov [10], with a few adaptations.

Our implementation need not deal with timeouts at the
granularity of single requests, as PBFT does. To prevent cen-
soring attacks (and thus ensure liveness), a PBFT replica
initiates a view change if any request has not been committed
for too long. Since ISS prevents censoring attacks by bucket
re-assignment, it is sufficient for us to make sure to commit
some batch before a timeout fires and reset this timer when
committing any batch. In the absence of incoming requests,
the primary periodically proposes an empty batch to prevent
a view change. Moreover, for simplicity, we implement view-
change with signatures according to Castro and Liskov [9].

4.1.2 HotStuff. We implement chained HotStuff according
to Yin et al. [33] with BLS [7] threshold signatures using
DEDIS library for Go [1].

In our implementation, each batch corresponds to a Hot-
Stuff command, and each segment sequence number corre-
sponds to a HotStuff view. Each segment is implemented as
a new HotStuff instance with a new root certificate 𝑄𝐶0. To
ensure that all sequence numbers can be delivered, i.e., to
ensure that we can always “flush” the pipeline of chained
HotStuff, we extend the segment with 3 dummy sequence
numbers corresponding to dummy empty batches which are
not added to the ISS log. Figure 4 demonstrates an example
of a segment with 3 sequence numbers.

4.1.3 Raft. Briefly, in Raft, nodes set a random timer within
a configurable range, which they reset every time they receive
a message from the elected leader. If the timer fires, the node
advances to a new term (similar to PBFT view) and enters
an election phase as a candidate leader. An elected leader
periodically sends append-entry requests for new values, pos-
sibly also empty, as a heartbeat. The leader collects responses
according to which it might resend to the followers any value
they declare as missing.

2Enforcing ⊥ values is necessary for SB to be implementable. Otherwise,
both SB Integrity and SB Termination cannot be satisfied at the same time.

24

State Machine Replication Scalability Made Simple EuroSys ’22, April 5–8, 2022, RENNES, France

𝑄𝐶! 𝑏𝑎𝑡𝑐ℎ!

0: 𝑣"
𝑄𝐶#!

4: 𝑣$
𝑄𝐶#"

8: 𝑣%
𝑏𝑎𝑡𝑐ℎ& 𝑏𝑎𝑡𝑐ℎ' 𝑄𝐶##

𝑛𝑖𝑙: 𝑣&
{	} 𝑄𝐶#$

𝑛𝑖𝑙: 𝑣(
{	} 𝑄𝐶#%

𝑛𝑖𝑙: 𝑣)
{	}

DECIDED COMMITTED PRE-COMMITTED PREPARED

Figure 4. Chained HotStuff execution for a segment with 3
sequence numbers {0, 4, 8}. When view 𝑣6 is prepared, 𝑣3 is
decided and 𝑏𝑎𝑡𝑐ℎ8 can be added to the log. 𝑄𝐶𝑣𝑖 is the Hot-
Stuff quorum certificate for view 𝑖 (e.g., a threshold signature
from 2𝑓 + 1 followers) on the proposal of view 𝑣𝑖 .

We implement Raft according to [28] with minor adapta-
tions. We fix the first leader to be the leader of the segment,
skipping the election phase. Until the end of the segment, the
leader periodically sends append-entry requests containing
batches. The leader continues to send empty append-entry
requests until the end of the epoch to guarantee that enough
nodes have added all the batches of the segment to their log.

4.2 Interaction with Clients
Clients submit requests to ISS by sending signed request mes-
sages to nodes. When a node delivers a request 𝑟 as described
in Section 3.2, it sends a response message to the client that
submitted 𝑟 . When the client obtains a quorum of responses,
it considers the request delivered.

To guarantee Liveness (Section 2.1, SMR4), a client must
ensure that at least one correct leader eventually receives the
request. A trivial solution is to send the request to all nodes.
However, ISS implements an optimistic a leader detection
mechanism to help the clients find the correct leader for each
request faster and to better load balance request processing
among the nodes. At any point in time, the bucket to which
a request belongs is assigned to a single segment. Thus, the
client only needs to send its request to the node currently
serving as a leader for the corresponding segment.

ISS keeps the clients updated about the assignment of buck-
ets to leaders. At each epoch transition, all nodes send a mes-
sage with the assignment for the next epoch to all clients. A
client accepts such a message once it receives it from a quo-
rum of nodes. The client submits all subsequent requests for
this epoch to the appropriate node. Moreover, it resubmits all
requests submitted in the past that have not yet been delivered.
This guarantees that all correct nodes will eventually receive
the request, which ensures liveness.

To make sure that, in most cases, a leader already has a
request when it is that leader’s turn to propose it, the client
sends its request to two additional nodes that it projects to be
assigned the corresponding bucket in the next two epochs.

4.3 Important Technical Aspects
4.3.1 Rate-limiting Proposals in PBFT. PBFT’s ability to
send proposals in parallel is instrumental for achieving high
throughput. However, as soon as a load spike or a temporary
glitch in network connectivity occurs (as it regularly does on
the used cloud platform), the leader can end up trying to send

too many batches in parallel. Due to limited aggregate band-
width, all those batches will take longer to transfer, triggering
view change timeouts at the replicas.

We address this issue by setting a hard limit on the rate of
sending batches “on the wire”, allowing (the most part of) a
batch to be transmitted before the transfer of the next batch
starts. This measure limits peak throughput but is effective at
protecting against unnecessary view changes.

4.3.2 Concurrency Handling. A naive approach to han-
dling requests, where each client connection is served by a
thread that, in a loop, receives a request, locks the correspond-
ing bucket queue, adds the request, and unlocks the bucket
queue, is detrimental to performance. We attribute this to
cache contention on the bucket queue locks.

Still, access to a bucket does have to be synchronized, as
adding (on reception) and removing (on commit) requests
must happen atomically. At the same time, an efficient lock-
free implementation of a non-trivial data structure such as a
bucket queue could be a research topic on its own.

We thus dedicate a constant, limited number of threads
(as many as there are physical CPU cores) to only adding
requests to bucket queues, such that each bucket queue is only
accessed by one thread, removing most of the contention. The
network-handling threads pass the received requests to the
corresponding bucket-adding threads using a lock-free data
structure optimized for this purpose (a Go channel).

4.3.3 Deployment, Profiling, and Analysis. ISS comes
with tools for automating the deployment of hundreds of
experiments across hundreds of geo-distributed nodes on the
cloud and for analyzing their outputs. They profile (using
pprof) the execution at each node, pinpointing lines of code
that cause stalling or high CPU load. For example, the above-
mentioned cache contention was pointed to by the profiler.
They also plot various metrics over time, such as the size
of proposed batches, commit rate, or CPU load. Automatic
exploration of the multi-dimensional parameter space proved
essential for understanding the inner workings of the system.

Using hundreds of cloud machines with hourly billing also
incurs significant cost. Automatically commissioning cloud
machines only for the time strictly necessary to run our ex-
periments and releasing those resources as soon as possible
most likely saved thousands of dollars.

5 Correctness
We now prove that multiplexing SB instances with ISS imple-
ments an SMR service as defined in Section 2.1.

SMR1 Integrity: If a correct node delivers (𝑠𝑛, 𝑟), where
𝑟 .𝑖𝑑 .𝑐 is a correct client’s identity, then client 𝑐 broadcast 𝑟 .

Proof. A correct node only delivers request 𝑟 if it is inserted
in the log as part of a committed batch 𝑏 (line 55). In turn, 𝑏 is
added in the log only upon an event ⟨𝑠𝑏, SB-DELIVER |𝑠𝑛𝑏, 𝑏⟩,

25

EuroSys ’22, April 5–8, 2022, RENNES, France Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić

where 𝑠𝑏 is a 𝑆𝐵(𝜎,𝑀, 𝑆, 𝐷) instance (line 40) and 𝑀 the set
of all possible valid batches in the buckets of the segment. A
correct node only invokes ⟨𝑠𝑏, SB-DELIVER |𝑠𝑛𝑏, 𝑏⟩ with a
batch 𝑏 in the set of valid batches 𝑀 . A validity condition is
that every request of the batch has a valid signature (see Sec-
tion 3.7). Since 𝑟 .𝑖𝑑 .𝑐 is the only process able to produce a
valid signature, 𝑐 must have broadcast 𝑟 . □

SMR2 Agreement: If two correct nodes deliver, respectively,
(𝑠𝑛, 𝑟) and (𝑠𝑛, 𝑟 ′), then 𝑟 = 𝑟 ′.

Proof. Let 𝑟 be in batch 𝑏 committed with 𝑠𝑛𝑏 and 𝑟 ′ in a
batch 𝑏 ′ committed with 𝑠𝑛𝑏′ . For 𝑟 and 𝑟 ′ to have the same
sequence number, by Equation (1) and by the same log es-
tablished by SB2 (Agreement), 𝑠𝑛𝑏 = 𝑠𝑛′

𝑏
. Since 𝑏 and 𝑏 ′ are

delivered with the same sequence number, they belong to the
same segment 𝑆 and, thus, also in the same set 𝑀 for which an
instance 𝑆𝐵(𝜎,𝑀, 𝑆, 𝐷) was initialized. Thus, by SB2, 𝑏 = 𝑏 ′,
and by Equation (1) 𝑟 = 𝑟 ′. □

Lemma 5.1. If a correct node initializes 𝑆𝐵(𝜎,𝑀, 𝑆, 𝐷) then
every correct node eventually initializes 𝑆𝐵(𝜎,𝑀, 𝑆, 𝐷).

Proof. By the ISS algorithm, the SB instances (including
their parameters 𝜎,𝑀, 𝑆, 𝐷) are initialized at the beginning of
each epoch 𝑒 depending only on the state of the node’s log at
the beginning of 𝑒. We prove the lemma by induction on the
epoch 𝑒. In epoch 0 all nodes have an empty log. Thus, they
instantiate 𝑆𝐵 with the same parameters.

We now assume that in epoch 𝑒 correct nodes 𝑖 and 𝑗 initial-
ize SB with the same parameters. Then, by SB 3 (Termination)
and by SMR 2 (Agreement) both 𝑖 and 𝑗 advance from epoch
𝑒 to epoch 𝑒 +1 with the same log. Thus, both 𝑖 and 𝑗 initialize
SB with the same parameters, i.e., sender 𝜎 , message set 𝑀
and segments 𝑆 . □

SMR3 Totality: If a correct node delivers request (𝑠𝑛, 𝑟),
then every correct node eventually delivers (𝑠𝑛, 𝑟).

Proof. Let us assume that some correct node 𝑖 delivers 𝑟

with sequence number 𝑠𝑛. Let 𝑗 be some other correct node.
From Equation (1), request 𝑟 , delivered by 𝑖, uniquely corre-
sponds to some batch 𝑏 with sequence number 𝑠𝑛𝑏 in the log
of 𝑖 which 𝑖 has committed. Therefore, there exists an instance
𝑆𝐵(𝜎,𝑀, 𝑆, 𝐷) which outputs SB-DELIVER(𝑠𝑛𝑏, 𝑏) at node
𝑖. By Lemma 5.1, 𝑗 also eventually initializes 𝑆𝐵(𝜎,𝑀, 𝑆, 𝐷).
Then SB 3 (Termination) guarantees that for each sequence
number in 𝑆 and, therefore, for also 𝑠𝑛𝑏 , 𝑗 delivers a message
𝑚 ∈ 𝑀∪⊥. Moreover, property SB 2 (Agreement) guarantees
that𝑚 = 𝑏. It follows that 𝑗 delivers 𝑟 for 𝑠𝑛. □

Lemma 5.2. In an infinite ISS execution, there exists some
correct node which is eventually in the leaderset forever with-
out being suspected.

Proof. By the Eventual Weak Accuracy of the failure detector,
there exists some correct node 𝑝 that will eventually stop
being suspected by any correct node. Eventually, either 𝑝 will

be in the leaderset forever, or there exists at least 2𝑓 + 1 other
nodes that stop being suspected forever – otherwise 𝑝 would
eventually be included in the leaderset. Among those 2𝑓 + 1
nodes there are at least 𝑓 + 1 correct ones. Therefore, in any
case, some correct node which stops being suspected remains
in the leaderset forever. □

Lemma 5.3. Let 𝑝 be a correct node which is eventually in
the leaderset forever without being suspected by any correct
node after time 𝑡 . If 𝑝 sb-casts a message𝑚 after time 𝑡 , then
𝑝 eventually sb-delivers𝑚.

Proof. By SB 3 (Termination), 𝑝 sb-delivers a message for
all sequence numbers for any SB instance. Let us assume, by
contradiction, that 𝑝 sb-casts message𝑚 after time 𝑡 in a SB
instance but delivers a set of messagesM for the sequence
numbers of the instance, such that 𝑚 ∉ M. By 𝑝 not being
suspected and SB 4 (Eventual Progress), for the SB instances
for which 𝑝 is the dedicated sender, 𝑝 delivers non ⊥ values
for all sequence numbers. By SB 1 (Integrity), all messages
in 𝑀 are sb-cast by 𝑝. A contradiction to 𝑚 ∉ M, since
𝑝, being correct, sb-casts only one message per sequence
number. Therefore, 𝑝 sb-delivers𝑚. □

SMR4 Liveness: If a correct client broadcasts request 𝑟 , then
some correct node eventually delivers (𝑠𝑛, 𝑟).

Proof. Let us assume by contradiction that 𝑟 is never delivered
by any correct node. This implies that every correct node puts
𝑟 in their bucket queue (by the correct client re-transmitting
𝑟 forever, see Section 3.7). Eventually, after some time 𝑡 , by
Lemma 5.2 there will be at least one correct, unsuspected
node 𝑖 in the leaderset forever.

Let 𝑅(𝑟) be the set of all requests received by 𝑖 before
receiving 𝑟 . Let 𝑟 map to a bucket 𝑏. If 𝑅(𝑟) = 0, i.e., 𝑟 is
the oldest request of 𝑖, either node 𝑖 delivers 𝑟 by time 𝑡 or
𝑟 remains in 𝑖’s corresponding bucket queue. By bucket re-
assignment, 𝑖 will invoke SB-CAST infinitely many times
with batches (messages) containing requests from bucket 𝑏.
Therefore, eventually, 𝑖 sb-casts a batch 𝑏 which contains
𝑟 and by Lemma 5.3 𝑖 delivers 𝑏. Let 𝑠𝑛 be the sequence
number with which 𝑏 is sb-delivered. By SB3 (Termination),
all correct nodes sb-deliver and add in their log all sequence
numbers in the segment of 𝑠𝑛. Therefore, by the ISS algorithm
(line 55), they deliver all requests in 𝑏, including 𝑟 .

We can prove by induction on the size of 𝑅(𝑟) that 𝑟 is
delivered by some correct node. A contradiction to 𝑟 not
being delivered. □

6 Evaluation
Our implementation is modular, allowing easy switching be-
tween different protocols implementing SB. We use 3 well-
known protocols for ordering requests: PBFT [10] (BFT),
HotStuff [33] (BFT), and Raft [28] (CFT). We evaluate the

26

State Machine Replication Scalability Made Simple EuroSys ’22, April 5–8, 2022, RENNES, France

impact ISS has on these protocols by comparing its perfor-
mance to their respective original single-leader versions. In
addition, we compare ISS to Mir-BFT [31] which also has
multiple leaders. We do not compare, however, to other multi-
leader protocols that do not prevent request duplication (e.g.,
Hashgraph [23], Red Belly [13], RCC [20], OMADA [16],
BFT-Mencius [27]). The codebase of these protocols is un-
available or unmaintained. Moreover, Mir-BFT evaluation
demonstrates that the performance of this family of protocols
deteriorates as the number of nodes increases in the presence
of duplicate requests. For the same reason, we also do not
compare to trivially running multiple instances of the single
leader protocols.

6.1 Experimental Setup
We perform our evaluation in a WAN which spans 16 data-
centers across Europe, America, Australia, and Asia on IBM
cloud. All processes run on dedicated virtual machines with
32 x 2.0 GHz VCPUs and 32GB RAM running Ubuntu Linux
20.04. All machines are equipped with two network interfaces,
public and private, rate limited for repeatability to 1 Gbps; the
public one is for request submission and the private one is for
node-to-node communication. Clients submit requests with
500 byte payload, the average Bitcoin transaction size [2].
Each node runs on a single virtual machine. Each node setup
is uniformly distributed across all datacenters, except for the
4-node setup which spans 4 datacenters, distributed across
all 4 continents. We use 16 client machines, also uniformly
distributed across all datacenters, each running 16 clients in
parallel which communicate independently with the nodes us-
ing TLS. We evaluate throughput, i.e., the number of requests
the system delivers per second, and end-to-end latency, i.e.,
the latency from the moment a client submits a request until
the client receives 𝑓 + 1 responses.

6.2 ISS Configuration
After a preliminary evaluation of each protocol, we estab-
lished a meaningful set of parameters. We do not claim that
this set is optimal. Our choice of parameters allows us, how-
ever, to demonstrate that ISS makes all three protocols scal-
able, which is the key contribution of this work. Table 1
summarizes the set of parameters of our evaluation.

PBFT HotStuff Raft
Initial leaderset size |N | |N | |N |
Max batch size 2048 4096 4096
Batch rate 32 b/s not applicable 32 b/s
Min batch timeout 0 s 1 s 0 s
Max batch timeout 4 s 0 4 s
Min epoch length 256 256 256
Min segment size 2 16 16
Epoch change timeout 10 s 10 s [10,20) s
Buckets per leader 16 16 16
Client signatures 256-bit ECDSA 256-bit ECDSA none

Table 1. ISS configuration parameters used in evaluation

For Raft and PBFT we maintain a fixed batch rate. This
translates to 𝑂 (1/𝑛) proposals per leader and 𝑂 (𝑛) message
complexity per bottleneck node3. The choice of a fixed batch
rate prevents throughput from dropping due to super-linear
message complexity. On the other hand, it introduces higher
end-to-end latency as the number of nodes grows, since the
batch timeout increases.

The epoch length is kept short: 256 batches per epoch for a
batch rate of 32 batches per second yield an epoch duration
of approximately 8 seconds in a fault free execution. Shorter
epoch length maintains lower latencies in case a fault occurs
because bucket re-distribution is executed faster. However, a
fixed epoch length yields a shorter segment length as the num-
ber of nodes increases. Too short segments for HotStuff and
Raft translate to a significant overhead of the dummy/empty
batches at the end of the segment. We, therefore, chose a
larger minimum segment size for those two protocols.

Batch timeouts should in general be kept small to prevent
increasing end-to-end latency. In Raft, however, by design,
a leader node re-sends proposals until it has received an ac-
knowledgment from the followers. A very short batch timeout
would result in sending proposals too soon and therefore re-
peating previous proposals. This has a negative impact on
throughput because the bandwidth is consumed by unneces-
sary duplicate proposals. To avoid this phenomenon, we opted
for a minimum batch timeout longer than the approximated
network round trip. To prevent rate-limiting Raft throughput
due to the long batch timeouts, we allowed a large batch size.

HotStuff, on the other hand, is a latency bound protocol
as sending a proposal first requires assembling a quorum
certificate which depends on the previous proposal. We opted,
therefore, for a batch timeout of 0 to allow the leader to send
proposals as fast as possible. Similarly to Raft, we allowed a
large batch size to prevent rate-limiting the throughput.

6.3 Failure-Free Performance
Figure 5 shows the overall throughput scalability of PBFT,
HotStuff, and Raft, with and without ISS, as well as that of
Mir-BFT.

We evaluate the scalability of ISS with up to 128 nodes,
uniformly distributed across all 16 datacenters. Mir-BFT is
evaluated on the same set of datacenters on machines with the
same specifications. For an apples-to-apples, comparison, we
disabled Mir-BFT optimizations (signature verification shard-
ing and light total order broadcast). Such optimizations could
be implemented on top of ISS yielding even better perfor-
mance. However, this goes beyond the scope of this work. For
all protocols we run experiments with increasing the client
request submission rate until the throughput is saturated.

In Figure 5 we report the highest measured throughput
before saturation. We observe that ISS dramatically improves

3We use the term bottleneck node to refer to the node that processes the most
messages in each protocol.

27

EuroSys ’22, April 5–8, 2022, RENNES, France Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić

the performance of the single leader protocols as the number
of nodes grows (37x, 56x and 55x improvement for PBFT,
HotStuff, and Raft, respectively, on 128 nodes). This im-
provement is due to overcoming the single leader bandwidth
bottleneck. Moreover, as the number of nodes grows, ISS-
PBFT outperforms Mir-BFT. While in theory, in a fault-free
execution, we would expect the two protocols to perform
the same, we attribute this improvement to the more careful
concurrency handling in the ISS implementation.

ISS-PBFT maintains more than 58 kreq/s on 128 nodes. Its
performance, though, drops compared to smaller configura-
tions. We attribute this to the increasing number of messages
each node processes, which, with a fixed batch rate (Table 1),
grows linearly with the number of nodes. We further observe
that throughput increases for Raft and HotStuff ISS imple-
mentations with the number of nodes, approaching that of ISS-
PBFT. While PBFT’s watermarking mechanism allows the
leader to propose batches in parallel, HotStuff, as explained
in Section 6.2, is latency-bound. However, running multiple
independent protocol instances with ISS helps improve the
overall throughput. Raft, on the other hand, suffers from the
redundant re-proposals. While this drawback is mostly hidden
in fast LANs with negligible latency, it manifests strongly in
a WAN. With more nodes in the leaderset the batch timeout
increases and re-proposals are reduced.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0 20 40 60 80 100 120 140

pe
ak

 th
ro

ug
hp

ut
 (k

re
q/

s)

number of nodes

ISS-PBFT
ISS-HotStuff

ISS-Raft
MirBFT

PBFT
HotStuff

Raft

Figure 5. Scalability of single leader protocols, their ISS
counterpart, and Mir-BFT.

In Figure 6 we observe that ISS latency grows with the
number of nodes. This is due to our choice of a fixed batch
rate in order to reduce message complexity and sustain high
throughput with an increasing number of nodes.

6.4 ISS Under Faults
In this section we fix PBFT as the protocol multiplexed with
ISS and study its performance under crash faults and Byzan-
tine stragglers in a WAN of 32 nodes. The PBFT view change
timeout is set to 10 seconds.

6.4.1 Crash Faults. We study two edge cases of faults: (a)
one or more leaders crash at the beginning of the first epoch of
the execution (epoch-start) and (b) one or more leaders crash
before sending the proposal for the last sequence number

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 10 20 30 40 50 60 70 80

La
te

nc
y

(s
)

Throughput (kreq/s)

ISS-PBFT 4 nodes
ISS-PBFT 16 nodes
ISS-PBFT 64 nodes

ISS-PBFT 128 nodes
PBFT 4 nodes

PBFT 16 nodes
PBFT 64 nodes

PBFT 128 nodes

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 10 20 30 40 50 60

La
te

nc
y

(s
)

Throughput (kreq/s)

ISS-HotStuff 4 nodes
ISS-HotStuff 16 nodes
ISS-HotStuff 64 nodes

ISS-HotStuff 128 nodes
HotStuff 4 nodes

HotStuff 16 nodes
HotStuff 64 nodes

HotStuff 128 nodes

 0
 10
 20
 30
 40
 50
 60
 70

 0 10 20 30 40 50 60

La
te

nc
y

(s
)

Throughput (kreq/s)

ISS-Raft 4 nodes
ISS-Raft 16 nodes
ISS-Raft 64 nodes

ISS-Raft 128 nodes
Raft 4 nodes

Raft 16 nodes
Raft 64 nodes

Raft 128 nodes

Figure 6. Latency over throughput for increasing load for (a)
ISS-PBFT, (b) ISS-HotStuff, and (c) ISS-Raft.

they lead in the first epoch of the execution (epoch-end). The
epoch-start crash fault is a worst-case scenario for the number
of proposed sequence numbers in an epoch. The epoch-end
crash fault is a worst-case scenario for the duration of the
epoch; all nodes need to wait for the fault to be detected at
the end of the epoch.

Figure 7 shows the impact of crash faults on latency. We see
that latency converges towards that of a fault-free execution
as we increase the duration of the experiment. This is due to
our leader selection policy removing the faulty node from the
leaderset once detected. Note that, regardless of their number,
epoch-end failures have a stronger impact on latency (as they
delay requests in all bucket queues) than epoch-start failures
(affecting only the faulty nodes’ bucket queues).

Figure 8 shows throughput over time. The short drops to 0
in throughput correspond to the epoch change. We see that an
epoch-start fault does not delay the epoch change, as the timer
detecting the faulty leader of one segment runs in parallel with
other segments. An epoch-end fault, on the other hand, delays
the epoch change. However, ISS quickly recovers by ordering
more than 170k req/s at the beginning of the second epoch
(see the spike in Figure 8(b)).

28

State Machine Replication Scalability Made Simple EuroSys ’22, April 5–8, 2022, RENNES, France

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120

m
ea

n
la

te
nc

y
(s

)

experiment duration (s)

f=0
f=1, epoch-start
f=1, epoch-end

f=2, epoch-start
f=2, epoch-end

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120

95
 p

er
ce

til
e

la
te

nc
y

(s
)

experiment duration (s)

f=0
f=1, epoch-start
f=1, epoch-end

f=2, epoch-start
f=2, epoch-end

Figure 7. Impact of crash faults on mean (a) and tail (b) end-
to-end latency for increasing experiment duration.

Figure 8. ISS-PBFT throughput average (over 1s intervals)
over time with one crash fault (a) at the beginning and (b) at
the end of the first epoch. The dashed lines indicate the end
of an epoch.

We compare the ISS performance under crash faults to Mir-
BFT. In Figure 9 we study a run of Mir-BFT on 32 nodes with
a single epoch-start crash fault. Mir-BFT stops processing all
proposals during epoch changes, unlike ISS where segments
make progress independently. This results in any crash fault

having an impact similar to that of the epoch-end fault for ISS.
Moreover, Mir-BFT relies on an epoch primary for liveness.
Every time the crashed node becomes epoch primary, it causes
an ungraceful epoch change. In Figure 9 this happens around
𝑡 = 600 s. The phenomenon repeats periodically, unlike in
ISS, where the faulty leader is permanently removed. Finally,
ISS crash fault recovery is more lightweight, since it concerns
only the batches of a single segment.

Figure 9. Mir-BFT throughput average (over 1s intervals)
over time with one epoch-start fault. Epoch change timeout is
at 10s and epoch duration is 256 blocks.

6.4.2 Byzantine Stragglers. A Byzantine straggler delays
proposals as much as possible without being suspected as
faulty and does not add requests in its proposals to harm
latency and throughput. We evaluate latency and throughput
with 𝑓 = 1 up to the maximum tolerated number of 𝑓 = 10
stragglers. In our evaluation the straggler sends out an empty
proposal every 0.5x epoch change timeout.

Figure 10 shows the impact of an increasing number of
stragglers. ISS with PBFT reaches from 15% of its maxi-
mum throughput with one straggler to 10% of its maximum
throughput with 10 stragglers. This, though, translates to
maintaining more than 11.4 and 7.9 kreq/s, respectively, on
32 nodes. Mean latency before saturation increases from 14𝑥
with one up to 29𝑥 with 10 stragglers.

 0
 20
 40
 60
 80

 100
 120
 140

 0 10 20 30 40 50 60 70 80

La
te

nc
y

(s
)

Throughput (kreq/s)

ISS-PBFT 0 stragglers
ISS-PBFT 1 straggler

ISS-PBFT 5 stragglers
ISS-PBFT 10 stragglers

Figure 10. ISS-PBFT latency over throughput for an increas-
ing number of stragglers.

29

EuroSys ’22, April 5–8, 2022, RENNES, France Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić

Figure 11 shows how throughput is affected over time with
a total submission rate of 16.4kreqs/s. The performance degra-
dation is due to the “holes” in the log temporarily created
by the stragglers. Request delivery progresses as fast as the
slowest straggler, hence the spikes in the graph. When the
straggler’s batch is finally committed, one more batch per
leader can be delivered as well (due to the interleaved batch
sequence numbers). This is inherent to any SMR protocol [4]
until the straggler is removed from the leaderset. Straggler re-
sistance in ISS depends on the underlying SB implementation.
A more sophisticated leader selection policy could dynam-
ically detect and remove stragglers from the leaderset. ISS
facilitates such dynamic detection by comparing the progress
of SB instances, similarly to RBFT [5] but without the need
for redundant instances. Alternatively, SB instances could
implement Aardvark’s [11] straggler detection mechanism
with reducing timeouts. This is promising future work.

Figure 11. ISS-PBFT throughput average (over 1s intervals)
over time with one Byzantine straggler. Each spike (every 5
seconds) corresponds to a group of correct leaders’ batches
delivered after the straggler’s batch.

7 Related Work
Consensus under Byzantine faults was first made practical
by Castro and Liskov [9][10] who introduced PBFT, a semi-
permanent leader-driven protocol. The quadratic message
complexity of PBFT across all replicas triggered vigorous re-
search towards protocols with linear message complexity.
Ramasamy and Cachin [29] replace reliable broadcast in
the common case (fault-free execution) with echo broadcast,
achieving common case message complexity 𝑂 (𝑛) per deliv-
ered payload. Echo broadcast is also exploited in [22][18] to
achieve linear common case message complexity. Recently,
HotStuff [33] introduced a 4th communication round to the 3
message rounds of reliable broadcast, to achieve linear mes-
sage complexity also for the recovery phase (view-change)
of the protocol. Regardless of the improvement of message
complexity, all aforementioned protocols have a single leader
at a time, permanent or not, limiting throughput scalability.

Mencius[26] introduced multiple parallel leaders, running
instances of Paxos [24], to achieve throughput scalability and

low latency in WAN under crash fault assumptions. BFT-
Mencius [27] was the first work to introduce parallel leaders
under Byzantine faults. BFT-Mencius introduced the Abortable
Timely Announced Broadcast communication primitive to
guarantee bounded delay after GST. However, BFT-Mencius
partitions requests among instances by deterministically as-
signing clients to replicas, which cannot guarantee load bal-
ancing. Moreover, this opens a surface to duplication perfor-
mance attacks, since malicious clients and replicas can abuse
the suggested denial of service mitigation mechanism.

Guerraoui et al. [19] also introduced an abstraction which
allows BFT instances to abort. The paper uses the abstraction
to compose sequentially different BFT protocols, which al-
lows a system to choose the optimal protocol according to
network conditions. Our work, on the other hand, composes
TOB instances in parallel to achieve throughput scalability.

Mir-BFT [31] is the multi-leader protocol which eliminates
request duplication ante broadcast, effectively preventing du-
plication attacks. Later FnF [6] suggested improved leaderset
policies for throughput scalability under performance attacks.
FnF adopts Mir-BFT’s request space partitioning mechanism
for duplication prevention. Similarly, Dandelion[21] lever-
ages the same mechanism to combine Algorand[17] instances.
However, Mir-BFT and FnF multiplex PBFT and SBFT [18]
instances, respectively, leveraging a single replica in the role
of epoch primary. ISS not only eliminates the need for an
epoch primary but also provides a modular framework to
multiplex any single leader protocol that can implement SB.

Parallel to this work, several works attempt multiplexing
BFT instances to achieve high throughput (Redbelly[12],
RCC[20], Omada[16]). However, similarly to BFT-Mencius,
clients are assigned to primaries, and, after a timeout, a client
can change primary to guarantee liveness, again allowing
duplication attacks.

8 Conclusion
In this work we introduced ISS, a general construction for
efficiently multiplexing instances of leader-based consensus
protocols. ISS leverages request space partitioning to pre-
vent duplication, similarly to Mir-BFT, but re-assigns the
partitions without the need of a replica to act as a primary,
even in the case of faults. To achieve this, we introduced
Sequenced Broadcast, a novel abstraction which allows pe-
riodically terminating and synchronizing the otherwise inde-
pendent consensus instances. Our evaluation shows that our
careful engineering along with the multi-leader paradigm re-
sults in scalable performance for three single-leader protocols
(PBFT[10], HotStuff[33], and Raft [28]), outperforming their
original designs by an order of magnitude at scale.

References
[1] Cosmos: A network of distributed ledgers. https://github.com/dedis/

kyber. Accessed: 30.05.2021.

30

https://github.com/dedis/kyber
https://github.com/dedis/kyber

State Machine Replication Scalability Made Simple EuroSys ’22, April 5–8, 2022, RENNES, France

[2] Bitcoin visuals: Transaction sizes. https://bitcoinvisuals.com/chain-
tx-size, 2019.

[3] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessan-
dro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed
Cocco, and Jason Yellick. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018,
pages 30:1–30:15, 2018.

[4] Karolos Antoniadis, Rachid Guerraoui, Dahlia Malkhi, and Dragos-
Adrian Seredinschi. State machine replication is more expensive than
consensus. Technical report, 2018.

[5] Pierre-Louis Aublin, Sonia Ben Mokhtar, and Vivien Quéma. RBFT:
redundant Byzantine fault tolerance. In IEEE 33rd International Con-
ference on Distributed Computing Systems, ICDCS 2013, 8-11 July,
2013, Philadelphia, Pennsylvania, USA, pages 297–306, 2013.

[6] Zeta Avarikioti, Lioba Heimbach, Roland Schmid, and Roger Watten-
hofer. Fnf-bft: Exploring performance limits of BFT protocols. CoRR,
abs/2009.02235, 2020.

[7] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In International conference on the theory and application
of cryptology and information security, pages 514–532. Springer, 2001.

[8] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to reliable
and secure distributed programming. Springer-Verlag New York Inc,
2010.

[9] M. Castro and B. Liskov. Practical byzantine fault tolerance. Operating
Systems Review, 33:173–186, 1998.

[10] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461,
November 2002.

[11] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and
Mirco Marchetti. Making Byzantine fault tolerant systems tolerate
Byzantine faults. In NSDI, 2009.

[12] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal.
Dbft: Efficient leaderless byzantine consensus and its application to
blockchains. In 2018 IEEE 17th International Symposium on Network
Computing and Applications (NCA), pages 1–8. IEEE, 2018.

[13] Tyler Crain, Christopher Natoli, and Vincent Gramoli. Evaluating the
Red Belly blockchain. CoRR, abs/1812.11747, 2018.

[14] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange
for Byzantine agreement. J. ACM, 1985.

[15] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in
the presence of partial synchrony. J. ACM, 35(2):288–323, April 1988.

[16] Michael Eischer and Tobias Distler. Scalable byzantine fault-tolerant
state-machine replication on heterogeneous servers. Computing,
101(2):97–118, 2019.

[17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nick-
olai Zeldovich. Algorand: Scaling Byzantine agreements for cryptocur-
rencies. In Proceedings of the 26th Symposium on Operating Systems
Principles, pages 51–68. ACM, 2017.

[18] Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi,
Benny Pinkas, Michael K. Reiter, Dragos-Adrian Seredinschi, Orr
Tamir, and Alin Tomescu. SBFT: A scalable and decentralized trust
infrastructure. In 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2019, Portland, OR, USA,
June 24-27, 2019, pages 568–580, 2019.

[19] Rachid Guerraoui, Nikola Knezevic, Vivien Quema, and Marko Vukolic.
The Next 700 BFT Protocols. In Proceedings of the ACM European
conference on Computer systems (EuroSys), 2010.

[20] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. RCC: resilient
concurrent consensus for high-throughput secure transaction processing.
In 37th IEEE International Conference on Data Engineering, ICDE

2021, Chania, Greece, April 19-22, 2021, pages 1392–1403. IEEE,
2021.

[21] Kadir Korkmaz, Joachim Bruneau-Queyreix, Sonia Ben Mokthar, and
Laurent Réveillère. Dandelion: multiplexing byzantine agreements
to unlock blockchain performance. arXiv preprint arXiv:2104.15063,
2021.

[22] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: speculative Byzantine fault tolerance. In
Proceedings of the Symposium on Operating Systems Principles (SOSP).
ACM, 2007.

[23] L. Baird. The Swirlds Hashgraph consensus algorithm: Fair, fast,
Byzantine fault tolerance. https://www.swirlds.com/downloads/
SWIRLDS-TR-2016-01.pdf, 2016.

[24] Leslie Lamport. Paxos made simple. ACM SIGACT News, 32(4):18–25,
2001.

[25] Dahlia Malkhi and Michael Reiter. Unreliable intrusion detection
in distributed computations. In Proceedings 10th Computer Security
Foundations Workshop, pages 116–124. IEEE, 1997.

[26] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Build-
ing efficient replicated state machines for wans. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’08, pages 369–384, Berkeley, CA, USA, 2008. USENIX
Association.

[27] Zarko Milosevic, Martin Biely, and André Schiper. Bounded delay in
byzantine-tolerant state machine replication. In IEEE 32nd Symposium
on Reliable Distributed Systems, SRDS, 2013.

[28] Diego Ongaro and John K. Ousterhout. In search of an understandable
consensus algorithm. In Proc. USENIX Annual Technical Conference,
pages 305–319, 2014.

[29] HariGovind V. Ramasamy and Christian Cachin. Parsimonious asyn-
chronous byzantine-fault-tolerant atomic broadcast. In James H. An-
derson, Giuseppe Prencipe, and Roger Wattenhofer, editors, Principles
of Distributed Systems, 9th International Conference, OPODIS 2005,
Pisa, Italy, December 12-14, 2005, Revised Selected Papers, volume
3974 of Lecture Notes in Computer Science, pages 88–102. Springer,
2005.

[30] Michael K. Reiter. A secure group membership protocol. IEEE Trans.
Software Eng., 22(1):31–42, 1996.

[31] Chrysoula Stathakopoulou, Tudor David, Matej Pavlovic, and Marko
Vukolić. Mir-bft: High-throughput bft for blockchains. arXiv preprint
arXiv:1906.05552, 2019.

[32] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić.
State-machine replication scalability made simple (extended version).
https://arxiv.org/abs/2203.05681, 2022.

[33] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and
Ittai Abraham. Hotstuff: BFT consensus with linearity and responsive-
ness. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC, 2019.

A Artifact Appendix
In this document we provide a guide on how to reproduce the
results of the main paper.

A.1 Abstract
ISS is a modular framework for implementing, deploying and
testing a state-machine replication service. The main task of
such a service is maintaining a totally ordered log of client
requests. This implementation uses multiple instances of an
ordering protocol (an SB implementation) and multiplexes
their outputs into the final log. The ordering protocol instances
running on each peer are orchestrated by a manager module

31

https://bitcoinvisuals.com/chain-tx-size
https://bitcoinvisuals.com/chain-tx-size
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf

EuroSys ’22, April 5–8, 2022, RENNES, France Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić

that decides which instance is responsible for which part of
the log, when to execute a checkpoint protocol and which
client requests are to be ordered by which ordering instance.
The decisions of the manager must be consistent across all
peers.

The log is a sequence of entries. Each entry has a sequence
number (sn) defining its position in the log, and contains a
batch of requests. The log is logically partitioned into seg-
ments - parts of the log attributed to a single instance of an
ordering protocol. It is the manager’s task to create these seg-
ments and to instantiate the ordering protocol for each created
segment.

The set of all possible client requests is partitioned (based
on their hashes) into subsets called buckets. The manager
assigns a bucket to each segment it creates. The ordering
protocol instance only creates batches of requests using the
assigned bucket. It is the manager’s task to assign buckets in
a way ensuring that no two segments that are being ordered
concurrently are assigned the same bucket. This is required
to prevent request duplication.

The manager observes the log and creates new segments
as the log fills up. When the manager creates a new segment,
it triggers the orderer that orders the segment. Ordering a seg-
ment means committing new entries with the sequence num-
bers of that segment. Periodically, the manager triggers the
checkpointer to create checkpoints of the log. The manager
observes the created checkpoints and issues new segments as
the checkpoints advance, respecting the watermark window.

A.2 Description & Requirements
A.2.1 How to Access. The code used to produce the re-
sults of the experiments is publicly available under Hyper-
ledger Labs 45. Importantly, the artifact does not reside in
the main branch of the repository. It can be found in the
research-iss branch. For completeness we mention that
main branch started as a production implementation of MirBFT
which has started shifting towards ISS.

A.2.2 Hardware Dependencies. We performed our eval-
uation on a WAN on IBM cloud. All processes ran on a
dedicated virtual machine with 32 x 2.0 GHz VCPUs and
32GB RAM running Ubuntu Linux 20.04.

Our WAN spanned in 16 datacenters across Europe, Amer-
ica, Australia, and Asia. In detail, machines were deployed in
the following locations: San Jose, Osaka, Amsterdam, Syd-
ney, London, Washington D.C., Chennai, Tokyo, Paris, Dallas,
Frankfurt, Milan, Mexico City, Toronto, Montreal, Seoul. For
each deployment (16, 32, 64, 128 nodes) the virtual machines
where uniformly distributed across all data centers. For the
smaller deployments (4, 8 nodes) the machines were located
on the first 4 and 8 locations of the list respectively.

4https://github.com/hyperledger-labs/mirbft/tree/research-iss
5Persistent ID:10.5281/zenodo.6344032

Finally, all machines were equipped with two network
interfaces, public and private, rate limited for repeatability to
1 Gbps.

A.2.3 Software Dependencies. Go 16+, Python 3

A.2.4 Benchmarks. None.

A.3 Set-up
In the README6 file of the root directory of the project
exist high level information about the architecture of the
code. Detailed information on how to deploy the code can be
found under the deployment directory7. In a nutshell, the
deployment provides scripts that automatically deploy a
network of nodes and clients on IBM cloud or locally, runs a
set of experiments, analyzes the results and produces a result
summary.

For an IBM cloud deployment, the user first needs to set
up an account with IBM cloud and register an ssh key with
this account. The repository has scripts to help the user set up
and initialize the ibmcloud cli.

To run a set of experiments the user needs only needs to
describe the desired set of experiments in a configuration
script. Then the user runs the main script deploy.sh. After
the result summary is generated, the user can find it in a .csv
file, or process it with a plotting scrip to visualize the results.

A.3.1 Major Claims.
• We observe that ISS dramatically improves the per-

formance of the single leader protocols as the number
of nodes grows: 37x, 56x and 55x improvement for
PBFT, HotStuff, and Raft respectively on 128 nodes
(Figure 5).
• ISS is robust under crash faults: the impact of the crash

fault is limited within the epoch it occurs. Latency re-
mains in the order of seconds even for the affected by
the crash fault requests (Figures 7 and 8).

A.3.2 Experiments. ISS configuration includes a wide set
of parameters. While the most important are grouped in Ta-
ble 1, in the artifact we provide the configuration scripts that
reproduce the main claims of the paper. Each script generates
the configuration for a set of experiments. In the rest of this
section we describe the set of experiments each configuration
file produced and we link them to the main claims of the main
paper.

For each of the experiments listed in Table 28 we performed
experiments on 4,8,16,32,64, and 128 nodes with 16 clients
for increasing client request rate. By fixing the number of

6https://github.com/hyperledger-labs/mirbft/blob/research-
iss/README.md
7https://github.com/hyperledger-labs/mirbft/blob/research-
iss/deployment/README.md
8All scripts referenced in Table 2 coun be found under
deployment/scripts/experiment-configuration/

32

https://github.com/hyperledger-labs/mirbft/tree/research-iss
10.5281/zenodo.6344032
https://github.com/hyperledger-labs/mirbft/blob/research-iss/README.md
https://github.com/hyperledger-labs/mirbft/blob/research-iss/README.md
https://github.com/hyperledger-labs/mirbft/blob/research-iss/deployment/README.md
https://github.com/hyperledger-labs/mirbft/blob/research-iss/deployment/README.md

State Machine Replication Scalability Made Simple EuroSys ’22, April 5–8, 2022, RENNES, France

nodes to 32 we produced the Latency-Throughout pots (Fig-
ure 6). We further produced latency throughput plots for each
number of nodes - not included in the paper. For each latency
- throughput plot the data point at which throughput stops
increasing and latency starts increasing significantly repre-
sents the maximum throughput. By collecting the maximum
throughput data points for all node and protocol configura-
tions we produced Figure 5.

Script Experiments Figure
generate-pbft.sh PBFT Figure 5, Figure 6a
generate-pbft.sh ISS-PBFT Figure 5, Figure 6a
generate-hotstuff.sh HotStuff Figure 5, Figure 6b
generate-ISS-hotstuff.sh ISS-HotStuff Figure 5, Figure 6b
generate-raft.sh Raft Figure 5, Figure 6c
generate-ISS-raft.sh ISS-RAFT Figure 5, Figure 6c

Table 2. Failure free performance.

The script generate-crash-faults.sh is used to
generate experiments for ISS-PBFT with [1, 2] failures at the
[beginning, end] of the epoch relevant to Figures 7 and 8. Fi-
nally, script generate-straggler-0.5.sh is used to
generate experiments for ISS-PBFT with a straggler relevant
to Figures 10 and 11.

33

	Abstract
	1 Introduction
	2 Theoretical Foundations
	2.1 System Model
	2.2 Sequenced Broadcast (SB)
	2.3 Multiplexing Instances of SB with ISS
	2.4 Assigning Buckets to Segments

	3 ISS Algorithm Details
	3.1 Epoch Initialization
	3.2 Ordering Request Batches
	3.3 Advancing Epochs
	3.4 Selecting Epoch Leaders
	3.5 Checkpointing and State Transfer
	3.6 Membership Reconfiguration
	3.7 Request Handling

	4 ISS Implementation
	4.1 SB Implementation
	4.2 Interaction with Clients
	4.3 Important Technical Aspects

	5 Correctness
	6 Evaluation
	6.1 Experimental Setup
	6.2 ISS Configuration
	6.3 Failure-Free Performance
	6.4 ISS Under Faults

	7 Related Work
	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up

