
Subversion-Resilient Enhanced Privacy ID

Antonio Faonio1, Dario Fiore2, Luca Nizzardo4, and Claudio Soriente3

1 EURECOM, Sophia Antipolis, France.
faonio@eurecom.fr

2 IMDEA Software Institute, Madrid, Spain.
{antonio.faonio, dario.fiore}@imdea.org

3 NEC Labs Europe, Madrid, Spain.
claudio.soriente@neclab.eu

4 Protocol Labs luca@proto.ai

Abstract. Anonymous attestation for secure hardware platforms leverages tailored group
signature schemes and assumes the hardware to be trusted. Yet, there is an ever increasing
concern on the trustworthiness of hardware components and embedded systems. A subverted
hardware may, for example, use its signatures to exfiltrate identifying information or even
the signing key.
In this paper we focus on Enhanced Privacy ID (EPID)—a popular anonymous attestation
scheme used in commodity secure hardware platforms like Intel SGX. We define and instan-
tiate a subversion resilient EPID scheme (or SR-EPID). In a nutshell, SR-EPID provides the
same functionality and security guarantees of the original EPID, despite potentially subverted
hardware. In our design, a “sanitizer” ensures no covert channel between the hardware and
the outside world both during enrollment and during attestation (i.e., when signatures are
produced). We design a practical SR-EPID scheme secure against adaptive corruptions and
based on a novel combination of malleable NIZKs and hash functions modeled as random
oracles.
Our approach has a number of advantages over alternative designs. Namely, the sanitizer
bears no secret information—hence, a memory leak does not erode security. Further, the role
of sanitizer may be distributed in a cascade fashion among several parties so that sanitization
becomes effective as long as one of the parties has access to a good source of randomness. Also,
we keep the signing protocol non-interactive, thereby minimizing latency during signature
generation.

Table of Contents

Subversion-Resilient Enhanced Privacy ID . 1
Antonio Faonio, Dario Fiore, Luca Nizzardo, and Claudio Soriente

1 Introduction . 2
1.1 Our Contribution . 3
1.2 Related work . 5

2 Subversion-Resilient Enhanced Privacy ID . 6
2.1 Subversion-Resilient EPID . 7
2.2 Syntax of Subversion-Resilient EPID (SR-EPID) . 7
2.3 Subversion-resilient Security . 9

3 Building Blocks . 18
3.1 Bilinear groups . 18
3.2 Structure-Preserving Signatures . 18
3.3 Non-Interactive Zero-Knowledge Proof of Knowledge . 20

4 Our SR-EPID Construction . 22
4.1 Efficiency . 24
4.2 Proof of Security . 24

1 Introduction

Anonymous attestation is a key feature of secure hardware platforms, such as Intel SGX5 or the
Trusted Computing Group’s Trusted Platform Module6. It allows a verifier to authenticate a party
as member of a trusted set, while keeping the party itself anonymous (within that set). This func-
tionality is realized by using a privacy-enhanced flavor of group signatures in which signatures
cannot be traced, not even by the group manager.

Given such realization paradigm, the security of anonymous attestation schemes is grounded on
the trustworthiness of the signer. In particular, anonymity and unforgeability definitions assume
that the signer is trusted and does not exfiltrate any information via its signatures. Yet, in most
applications, the signer is a small piece of hardware with closed-source firmware (e.g., a smart card)
to which a user has only black-box access. In such a scenario, trusting the hardware to behave
honestly may be too strong of an assumption for mainly two reasons. First, having only black-box
access to a piece of hardware makes it virtually impossible to verify whether the hardware provides
the claimed guarantees of security and privacy. Second, recent news on state-level adversaries cor-
rupting security services7 have shown that subverted hardware is a realistic threat. In the context
of anonymous attestation, if the hardware gets subverted (e.g., via firmware bugs or backdoors), it
may output valid, innocent-looking signatures that, in reality, covertly encode identifying informa-
tion (e.g., using special nonces). Such signatures may allow a remote adversary to trace the signer,
thereby breaking anonymity. Using a similar channel, a subverted signer could also exfiltrate its

5 https://www.intel.com/content/www/us/en/architecture-and-technology/

software-guard-extensions.html
6 https://trustedcomputinggroup.org/resource/tpm-library-specification/
7 https://snowdenarchive.cjfe.org/

https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://snowdenarchive.cjfe.org/

secret key, and this would enable an external adversary to frame an honest signer, for example by
signing bogus messages on its behalf.

Previous work has studied subversion resilience in the context of Direct Anonymous Attestion
(DAA)—the anonymous attestation scheme used in TPMs. The subversion-resilient DAA proposed
by Camenisch et al. [9] leverages a “split” signature scheme where the secret key is split between
the TPM and the host. Intuitively, this approach guarantees security in presence of a subverted
TPM as long as the host behaves honestly and does not leak its share of the secret key.

1.1 Our Contribution

We continue the study of subversion-resilient anonymous attestation and we focus on Enhanced
Privacy ID (EPID) [8,7], a popular anonymous attestation scheme that is currently deployed on
commodity trusted execution environments like Intel SGX. Our contribution is mainly twofold: we
first formalize the notion of Subversion-Resilient EPID (SR-EPID), and then we propose an efficient
realization of this cryptographic primitive in bilinear groups.

The Model of Subversion-Resilient EPID. Enhanced Privacy ID is essentially a privacy-
enhanced group signature where the group manager cannot trace a signature but signers can be
revoked. In the context of remote attestation, a group member is instantiated by its signing com-
ponent (the “signer”), which is typically a piece of hardware.

In order to counter subverted signers, our main idea is to enhance the EPID model by adding a
“sanitizer” party whose goal is to ensure that no covert channel is established between a potentially
subverted signer and external adversaries.8 In practical application scenarios, the sanitizer could
run on the same host of the signer (e.g., on a phone to sanitize signatures issued by the SIM card),
or on a separate one (e.g., on a corporate firewall to sanitize signatures issued by local machines).

Compared to a subversion-resilient anonymous attestation scheme that uses split-signatures [9],
our approach comes with multiple benefits. First, signature generation is non-interactive and the
communication flow is unidirectional from the signer to the sanitizer, on to the verifier. Thus, our
design decreases signing latency and provides more flexibility as the sanitization of a signature
does not need to be done online. Another benefit of our design is the fact that the sanitizer holds
no secret. This means that if a memory leak occurs on the sanitizer, one has nothing to recover
but public information. Differently, in a split signature approach, security properties no longer
hold if the TPM is subverted and the key share of its host is leaked. Further, as sanitization is
non-interactive and requires no secret, it may even be carried out by multiple parties in a cascade
fashion so that covert channels are eradicated as long as one of the sanitizers has access to a good
source of randomness—and such randomness is not available to the adversary. It is not clear how
to achieve such “fault tolerance” with split signatures. One may split the signing key across several
parties and design a multiparty signing protocol, but very likely this would lead to high latency for
signature generation.

The idea of adding a sanitizer to mitigate subversion attacks in anonymous attestation is in-
spired by that of using a cryptographic reverse firewall of Mironov and Stephens-Davidowitz [22].
Besides subversion-resilient unforgeability (as in Ateniese et al. [2]), in an EPID scheme we have
to guarantee additional properties such as anonymity and non-frameability, as well as to deal with
the complications of supporting revocation. Formalizing all these properties in rigorous definitions
turned out to be non trivial and is a significant contribution of this paper.

8 Note that adding a party to mediate the communication between the potentially subverted signer and
the outside world is necessary, as the signer could exfiltrate arbitrary information otherwise [9].

3

As a byproduct of our new definitions of SR-EPID, we also obtain a careful formalization of the
notion of unforgeability for (non-subversion-resilient) EPID schemes, or more broadly, for group
signature schemes with both key-revocation mechanisms and a blind join protocol. For complete-
ness, we describe this simpler and non-subversion-resilient version of our notion in Appendix ??.
Compared to the previous definition of [7], ours formalizes several technical aspects that in [7] were
essentially expressed only in words and left to the reader’s interpretation. Given that EPID schemes
are already deployed in real-world systems, we believe this is a result that can be of independent
interest for the community.

Our SR-EPID in Bilinear Groups. Our next contribution is an efficient construction of a SR-
EPID based on bilinear pairings. Our starting point is the classical blueprint of group signature
schemes where: (I) the group manager holds the secret key of a signature scheme; (II) during the
join protocol the group manager creates a blind signature σy on a value y private to the prospective
group member, and both σ and y are the group member’s secret key; (III) a signature σM on
message M is a signature of knowledge for M of a σy that verifies for y and the group public
key. (IV) Finally, to support revocation and linkability, a signature σM is bound to an arbitrary
basename B and contains a pseudorandom token RB = fy(B). Without knowing y the token looks
random (and thus hides the signer’s identity) but, at the same time, can be efficiently checked
against a revoked key y∗. That is, the verifier checks if RB = fy∗(B) for all the y∗ in the revocation
list. Similarly, a signer that allows for linkability of its signatures may accept to produce multiple
signatures on the same basename; such signatures could be easily linked as they carry the same
token. The approach described so far follows closely the one of EPID [8,7].

Our first idea to contrast subversion attacks is to let the sanitizer re-randomize every signature
σM produced by the signer, eliminating in this way that the randomness chosen by the signer
encodes a covert channel. Technically, we achieve this by employing re-randomizable NIZKs in step
(III).

This is not, however, the only possible attack vector between a subverted signer and an external
adversary. For example, the signer may come with an hardcoded value y known to the external
adversary so that all the (valid) signatures produced by the signer can be easily traced. To counter
this class of attacks we let the sanitizer contribute with its randomness to the choice of y during
the join protocol. Even further, we require the sanitizer to re-randomize any message and NIZK
sent to the group manager during the join protocol. Finally, another potential attack is that at any
moment after the join protocol, the signer may switch to creating signatures by using a hardcoded
secret y′, σy′ . As above, an external party equipped with y′ could track those signatures. To contrast
this class of attacks, we require the signer to produce, along with every signature σM , a proof πσ
that is verified by the sanitizer using a dedicated verification token and that ensures that the signer
is using the same secret y used in the join protocol; if the check passes, the sanitizer strips off πσ
and returns a re-randomization of σM . Our model diverges from the cryptographic reverse firewall
framework of [22] because of the verification token mechanism. Looking ahead, this is not simply a
limitation of our scheme but more generally we can show that EPID schemes that admit secret-key
based revocation cannot have a cryptographic reverse firewall, we give more details in Section 2.2.

The description above gives a high-level overview of the main ideas that we introduced in the
protocol to counter subversion attacks. However, a significant technical contribution in the design of
our construction is a set of techniques that we introduced in order to reconcile our extensive use of
malleable NIZKs (and in particular, Groth-Sahai proofs [18]) with the goal of obtaining an efficient
SR-EPID scheme. The main problem to prove security of our scheme is that we need the NIZK to be

4

not only malleable but also to have a form of simulation-extractable soundness.9 In the EPID of [7],
simulation-extractable soundness is also needed, but it is obtained for free by using Fiat-Shamir
transformed Sigma protocols (Faust et al. [16]). In our case, this approach is not viable because the
Fiat-Shamir compiler breaks any chance for re-randomizability.10 One could use a re-randomizable
and (controlled) simulation-extractable NIZK (Chase et al. [13]), but in practice these tools are very
expensive—they would require hundreds of pairings for verification and hundreds of group elements
for the proofs.

To overcome this problem, we propose a combination of (plain) GS proofs with the random
oracle model. Briefly speaking, we use the random oracle to generate the common reference string
that will be used by the GS proof system and use the property that, in perfectly-hiding mode,
this CRS can be created from a uniform random string. (In particular, we need cryptographic
hash functions that allow to hash directly on G1 and on G2, see Galbraith et al. [17].) In this
way we can program the random oracle to produce extractable common reference strings for the
forged signature made by the adversary and for the messages in the join protocol with corrupted
members, and program the random oracle to have perfectly-hiding common reference strings for all
the material that the reduction needs to simulate. Our technique is a reminiscence of techniques
based on programmable hash functions [19,12] and linearly homomorphic signatures [20]. However,
our ROM-based technique enables for more efficient schemes with unbounded simulation soundness.

The resulting scheme provides the same functionality of EPID, tolerates subverted signers, and
features signatures that are shorter than the ones in [7] for reasonable sizes of the revocation list:
ours have 28 + 2n group elements whereas EPID signatures have 8 + 5n, where n is the size of the
revocation list (i.e., ours are shorter already for n ≥ 7).

1.2 Related work

Subversion-resilient signatures and Cryptographic Reverse Firewalls. Ateniese et al., [2]
study subversion-resilient signature schemes and shows that unique signatures as well as the use
of a cryptographic reverse firewall (RF) of [22] ensure unforgeability despite a subverted signing
algorithm. Our scheme could be roughly interpreted as a new EPID scheme equipped with a cryp-
tographic reverse firewall for the join protocol that allows a new party to join the group, and a
cryptograhic reverse firewall that protects the signatures sent by the signer. However, as already
mentioned, there are some technical details that differentiate our model to the cryptographic reverse
firewall framework.

Subversion-resilient anonymous attestation. Camenisch et al. [10] modify the UC corruption
model and provide a UC definition for DAA that guarantees privacy despite a subverted TPM. The
DAA scheme presented in [10] leverages dual-mode signatures of Camenisch and Lehmann [11] and
builds upon the ideas of Bellare and Sandhu [5] to provide a signature scheme where the signing key
is split between the host and the TPM. Later on, Camenisch et al. [9] build on the same idea of [10]
and show a UC-secure DAA scheme that requires only minor changes to the TPM 2.0 interface and
tolerates a subverted TPM by splitting the signing key between the host and the TPM.

9 In fact, on one hand we have to extract the witness from the adversary’s forgery, while on the other hand
we rely on zero-knowledge in order to disable any covert channel from subverted signers.

10 Very informally speaking, any re-randomization algorithm should be able to change the hash value to a
fresh one without the knowledge of the witness, which is in contrast with the special soundness of the
sigma-protocols.

5

We argue that splitting the signing key between the potentially subverted hardware (e.g., the
TPM) and the host to achieve resilience to subversions is viable in scenarios where (i) the channel
between the two parties has low latency—because of the interactive nature of the signing protocol—
and (ii) the user can trust the host. Both conditions holds for TPM scenarios. In particular, a TPM
is soldered to the motherboard of the host and has a high-speed bus to the main processor. Also,
the TPM manufacturer is usually different from the one of the main processor—hence, the user
may trust the latter but not the former.

In case of TEEs such as Intel SGX, we note that there is no real separation between the TEE
and the main processor. Thus, it would be hard to justify an untrusted TEE and a trusted processor
since, in reality, they lie on the same die and are shipped by the same manufacturer. As such, the
entity in charge of preventing the TEE from exfiltrating information (i.e., the one holding a share
of the signing key) must be placed elsewhere along the channel between the TEE and the verifier,
thereby paying a latency penalty to generate signatures.

We argue that our solution is more suitable for TEE platforms like Intel SGX. In particular,
the non-interactive nature of the signing protocol allows us to place the sanitizer “away” from the
signer, without impact on performance. Thus, the sanitizer may be instantiated by a co-processor
next to the TEE, or it may run on a company gateway that sanitizes attestations produced by
hosts within the company network before they are sent out. As the sanitizer and the potentially
subverted hardware may run on different platforms, they may come from different manufacturers.
For example, one could pick an AMD or Risc-V processor to sanitize an Intel-based TEE such as
SGX. A sanitizer may even be built by combining different COTS hardware as [21].

Finally, we note that our definition of SR-EPID is not UC but caters for adaptive corruptions
whereas the UC definition of DAA in [10,9] only considers static corruptions.

2 Subversion-Resilient Enhanced Privacy ID

In this section we introduce our notion of Subversion-Resilient Enhanced Privacy ID (SR-EPID).
Before we do so, we discuss EPID and its shortcomings in case of subverted hardware.

Background on EPID. Enhanced Privacy ID is essentially a privacy-enhanced group signature
scheme with a group manager and a number of group members.

Compared to classic group signatures (see Bellare et al. [4]), EPID drops the ability of the
group manager to trace signatures, and adds novel revocation mechanisms. In particular, EPID
allows to revoke a group member by adding its private key to a revocation list named PrivRL; while
verifying a signature σ, the verification algorithm checks that none of the private keys in PrivRL
may have produced σ. In case the secret key of a misbehaving group member did not leak, EPID
can still revoke that member by using one of its signatures. That is, EPID accounts for an additional
revocation list, named SigRL, containing signatures of revoked members. Thus, a valid signature σ
must carry a zero-knowledge proof that the private key used to compute σ is different from any of
the keys used to produce any of the signatures in SigRL.

Security notions for EPID include anonymity and unforgeability. Informally, anonymity ensures
that signatures are not traceable by any party, including the group manager. Unforgeability ensures
that only non-revoked group members can generate valid signatures.

We note that EPID does not account for pseudonymous signatures. The latter allow for a sort
of controlled linkability as each signature is bound to a “basename”, and one can easily tell—via a
Link algorithm— whether two signatures on the same basename where produced by the same group

6

member. This signature mode is actually available in DAA and in the version of EPID used by Intel
SGX. Further, DAA defines a security property tailored to pseudonymous signatures called non-
frameability. Informally, non-frameability ensures that no adversary—not even a corrupted group
manager—can create a signature on a message m and basename B, that links to a signature of an
honest group member (when this honest group member never signed m,B). Given the usefulness
of pseudonymous signatures in real-world deployments, we decide to include them—along with a
definition of non-frameability—in our definition of subversion-resilient EPID.

2.1 Subversion-Resilient EPID

Overview and rationale of the definition. We introduce a “sanitizer” that proxies the com-
munication between the signer and the outside world. For simplicity, we assume each signer to be
paired with a sanitizer and we denote a pair of signer-sanitizer as a “platform”.11 In the security
experiments we denote with I the issuer, with S the sanitizer, with M the signer, and with P the
platform. Very often we refer to the signer as the “hardware” or the “machine” (thus the letterM
for our notation). We assume group members to be platforms and gear security definition towards
them.12

The goal of the sanitizer is to remove any possible covert channel from the signer to an external
adversary. For example, a subverted signer could establish a covert channel through the randomness
used at signature generation. Alternatively, a subverted signer may maliciously influence the join
protocol to obtain as output a fixed secret key that it is a prior known to the adversary; later
on, the adversary may simply use this known private key to break anonymity (since, by definition,
private key based revocation allows a verifier to tell if a signature has been produced with a given
private key). Yet another option is for the signer to behave honestly during the join protocol, but
later use a preloaded secret key to produce signatures.13 Once again, the adversary may use that
known key and a signature to break platform anonymity.

To deal with these issues, our notion of SR-EPID is designed so that (i) the sanitizer participates
to the join protocol contributing to the private key of the signer, (ii) each signature output by the
signer carries a proof (for the sanitizer to verify) that the private key used for signing is the very
same one obtained during the join protocol, and (iii) the sanitizer sanitizes signatures to avoid
covert channel based on maliciously-sampled randomness.

The resulting syntax is a generalization of EPID that adds a Sanitize algorithm and modifies
the original Join and Sig algorithms.

2.2 Syntax of Subversion-Resilient EPID (SR-EPID)

We denote by 〈d, e, f〉 ← PA,B,C〈a, b, c〉 an interactive protocol P between parties A, B and C where
a, b, c (resp. d, e, f) are the local inputs (resp. outputs) of A, B and C, respectively.

11 In practical deployments a sanitizer may sanitize signatures of multiple signers and a single signer may
have multiple sanitizers.

12 For example, the anonymity definition focuses on an adversary that must tell which, out of two platforms,
output the challenge signature.

13 Since anonymity must hold also against a malicious group authority, it is possible for the signer to hold
one or more certified private keys.

7

An SR-EPID consists of an interactive protocol Join and algorithms: Init, Setup, Sig, Ver, Sanitize.
All the algorithms (and the protocol) but Init take as input public parameters (generated by Init);
for readability reasons, we keep this input implicit.

Init(1λ)→ pub. This algorithm takes as input the security parameter λ and outputs public param-
eters pub.

Setup(pub) → (gpk, isk). This algorithm takes the public parameters pub and outputs a group
public key gpk and an issuing secret key isk for the issuer I.

JoinI,Si,Mi〈(gpk, isk), gpk, gpk)〉 → 〈b, (b, svti), ski〉. This is a three-party protocol between the
issuer I, a sanitizer Si and a signer Mi. The issuer inputs (gpk, isk), while the other parties
only input gpk. At the end of the protocol, I obtains a bit b indicating if the protocol terminated
successfully, Mi obtains private key ski, and Si obtains a sanitizer verification token svti and
the same bit b of I.

Sig(gpk, ski, bsn,M, SigRL) → ⊥/(σ, πσ). The signing algorithm takes as input the group public
key gpk, a private key ski, a basename bsn, a message M , and a signature based revocation list
SigRL. It outputs a signature σ and a proof πσ, or an error ⊥ (if SigRL contains a signature
produced with ski).

Ver(gpk, bsn,M, σ, SigRL,PrivRL)→ 0/1. The verification algorithm takes as input the group public
key gpk, a basename bsn, a message M , a signature σ, a signature based revocation list SigRL,
and a private key based revocation list PrivRL. It outputs 0 or 1 if σ is respectively an invalid
or a valid signature on M .

Sanitize(gpk, bsn,M, (σ, πσ),SigRL, svti) → ⊥/σ′. The sanitization algorithm takes as input the
group public key gpk, a basename bsn, a message M , a signature σ with corresponding proof
πσ, a signature based revocation list SigRL, and a sanitizer verification token svti. It outputs
either ⊥ or a sanitized signature σ′.

Link(gpk, bsn,M1, σ1,M2, σ2) → 0/1. The linking algorithm takes as input the group public key
gpk, a basename bsn, and two message-signature-SigRL triples M1, σ1 and M2, σ2. It outputs
1 if both signatures are valid and were created, on the same basename, by the same signer; it
outputs 0 otherwise.

In our syntax, we assume PrivRL to be a set of private keys {ski}i, and SigRL to be a set of triples
{(bsni,Mi, σi)}i, each consisting of a basename, a message and a signature.

We define two forms of correctness with and without revocation lists.

Correctness (without revocation lists): To keep the syntax more light we let Sig(gpk, sk, bsn,M) be
equal to Sig(gpk, sk, bsn,M, ∅), and Ver(gpk, bsn,M, σ) be equal to Ver(gpk, bsn,M, σ, ∅, ∅). We say
that an SR-EPID scheme satisfies (standard) correctness if for all pub ← Init(1λ), all (gpk, gsk) ←
Setup(pub), all 〈b, (b, svt), sk〉 ← Join〈(gpk, gsk), gpk, gpk)〉 such that b = 1, and for any basename
bsn, message M , and any signature σ ← Sanitize(gpk, bsn,M, Sig(gpk, sk, bsn,M), svt) we have that
Ver(gpk, bsn,M, σ) = 1.

Correctness (with revocation lists): We say that an SR-EPID scheme satisfies correctness if any sig-
nature produced by a non-revoked group member passes the verification procedure. More formally,
for all pub ← Init(1λ), all (gpk, gsk) ← Setup(pub), all 〈b, (b, svt), sk〉 ← Join〈(gpk, gsk), gpk, gpk)〉
such that b = 1, and for any basename bsn, message M , private-key revocation list PrivRL and signa-
ture revocation list SigRL, and any signature σ ← Sanitize(gpk, bsn,M, Sig(gpk, sk, bsn,M, SigRL),SigRL, svt)
we have:

8

(sk /∈ PrivRL) ∧ (Σ ∩ SigRL = ∅)⇒ Ver(gpk, bsn,M, σ, SigRL,PrivRL) = 1

where Σ is the set of signatures produced with sk.

2.3 Subversion-resilient Security

The security of an SR-EPID scheme is defined by three main properties, namely anonymity, un-
forgeability, and non-frameability that are defined below.

We consider subverted signers that can arbitrarily behave during the join protocol and, in
particular, abort the execution of the protocol. However, once the join protocol is completed we
assume that signers, although subverted, maintain a correct “input-output behavior”. That is, a
subverted signer produces a valid signature to a message and basename, namely a signature that
verifies if the signer were not revoked, but that could be arbitrarily (and maliciously) distributed
over the set of all valid signatures. We formalize this idea in the following assumption.

Assumption 1. Let Π be a SR-EPID. We assume that for any public parameter pub, any ad-
versary A, any gpk and auxiliary information aux, and any (possibly adaptively chosen) sequence
of tuples (bsn1,M1), . . . , (bsnq,Mq), let 〈b, (b′, svt), state1〉 be a possible output of the join pro-
tocol JoinA,S,M〈(gpk, aux), gpk, (gpk, aux)〉 conditioned on b′ = 1 or a possible output of the
join protocol JoinI,A,M〈(gpk, aux), gpk, (gpk, aux)〉 conditioned on b = 1 and let σi, statei ←
Mi(statei−1,Mi, bsni) for i = 1, . . . , q then

∀i = 1, . . . , q : Vf(gpk,M1, bsn1, σi) = 1

Assumption 1 models the fact that, if signers can be subverted, a signer should be considered safe
as long as it does not return errors when it comes to generating signatures. The occurrence of such
an error should alert a sanitizer anyway. First, such an error can occur if one of the signatures
produced by the signer was included in the signature based revocation list: if the list was honestly
created, it means that the signer has been revoked; if the list was maliciously crafted, then the
signature request may constitute an attempt to deanonymize the signer. Second, if the errors are
arbitrary then they inevitably enable to signal any kind of information from the signer.

Macros for the Join Protocol and Signature generation. As mentioned, the join protocol
is a three-party protocol with the sanitizer being in the middle. To simplify the already heavy
notation, we define the macro Join(M, stateS , stateM, γI) which identifies one full round of the join
protocol from the issuer point of view with an honest sanitizer and a machine M. In more detail,
the macro takes as input the description of the (possibly subverted) machine M, the state of the
sanitizer stateS , the state of the machine stateM and the message sent by the issuer γI , and it
identifies the following set of actions:

Join(M, stateS , stateM, γI):

1. (γ′S , state
′
S)← S.Join(gpk, stateS , γI);

2. (γM, state
′
M)←M.Join(gpk, stateM, γ

′
S);

3. (γS , state
′′
S)← S.Join(gpk, state′M, γM);

4. Output (state′′S , state
′
M, γS).

9

Notice the procedures additionally take as input the group public key gpk, which we keep implicit.
Similarly, the signature procedure is a two-phase protocol between the signer and the sanitizer for
which we define the macro:

Sig(M, stateM, svt, bsn,M, SigRL):
1. (σ′, π′σ, state

′
M)←M.Sig(stateM, bsn,M, SigRL);

2. if svt 6= ⊥ then σ ← Sanitize(gpk, bsn,M∗, (σ′, π′σ),SigRL, svt);
3. else σ ← σ′;
4. Output (state′M, σ).

The macro additionally checks in step 2 that svt is a valid string. We use this check to discriminate
the case when the sanitizer is corrupted.

Subversion-Resilient Anonymity. This notion formalizes the idea that an adversarial issuer
cannot identify a group member through the signatures it produces. Recall that we assume a signer
Mi to be paired with a sanitizer Si; we denote the platform constituted by Mi and Si with Pi.
We assume Mi to be subverted, i.e., it runs an adversarially specified program, while Si is honest.
The case when both Mi and Si are corrupted is meaningless for anonymity since the adversary
controls all the relevant parties. The remaining case in which Mi is honest but Si is corrupted is
also hopeless for anonymity since a corrupted sanitizer could always maul the outputs of the signer
in order to reveal its identity.

We formalize subversion-resilient anonymity for SR-EPID in a security experiment that appears
in Fig. 1, and we formally define anonymity as follows.

Definition 1. Consider the experiment described in Fig. 1. We say that an SR-EPID Π is anony-
mous if and only if for any PPT adversary A:

Advanon
A,Π(λ) :=|Pr

[
Expanon

A,Π(λ, 0) = 1
]
− Pr

[
Expanon

A,Π(λ, 1) = 1
]
| ∈ negl(λ).

In the experiment we letMi be an adversarially specified program, yet, as argued above, we assume
that it preserves the expected input-output functionality. Namely, there is a commandMi.Sig that
is supposed to follow the input-output behavior of the Sig algorithm.

Here we provide an intuitive explanation of the anonymity experiment. The idea is that the
adversary plays the role of the issuer, i.e., it selects the group public key, and it can do the following:
(1) ask platforms with subverted signers to join the system; (2) ask platforms with subverted signers
to sign messages; (3) corrupt platforms. For (1), it means that the adversary specifies the code of
a signer Mi that, together with an honest sanitizer Si, run the Join protocol with the adversary
playing the role of the issuer. For (2), a subverted signerMi produced a signature that is sanitized
by Si and then delivered to the adversary. Finally, (3) simply models a full corruption of the platform
in which the adversary learns the secret key ski obtained by Mi at the end of its Join protocol.

The adversary can choose two platforms (Pi0 ,Pi1), a basename bsn∗, and a message M∗ and it
receives a sanitized signature on M∗, bsn∗ produced by one of the two platforms. The goal of the
adversary is to figure out which platform produced the signature. In order to avoid trivial attacks
the two “challenge” platforms must be non-corrupted and none of their signatures can be included
in the SigRL used to produce the challenge signature. Further, if the adversary has previously
requested a signature with bsn∗ form either platform, the challenger aborts. Similarly, after seeing

10

Experiment Expanon
A,Π(λ, b)

1 : Ljoin, Lusr, Lcorr ← ∅; post← 0; Bad← true

2 : pub← Init(1λ); gpk← A(pub);

3 : (bsn∗,M∗, i0, i1, SigRL
∗)← A(gpk)C(gpk,·); post← 1;

4 : if (i0, ∗, ∗, ∗, ∗) /∈ Lusr ∨ (i1, ∗, ∗, ∗) /∈ Lusr then Bad←true;

5 : if VerSigRL(gpk, SigRL∗) = 0 then Bad←true

6 : for j = 0, 1 do :

7 : Retrieve (ij ,Mij , stateij , svtij , Bij) from Lusr;

8 : if bsn∗ ∈ Bij then Bad←true

9 : (state′ij , σj)← Sig(Mij , stateij , svtij , bsn,M, SigRL);

10 : Update (ij ,Mij , state
′
ij
, svtij , Bij ∪ {bsn

∗}) in Lusr;

11 : if ⊥ ∈ {σ0, σ1} then Bad←true else σ∗ ← σb;

12 : b′ ← A(σ∗)C(gpk,·);

13 : if Bad = false return b′; else return b̃←$ {0, 1}.

Oracle C(gsk, ·)

1 : Upon query (join, i, γI) :

2 : Retrieve (i,Mi, stateS , stateM) from Ljoin, ;

3 : If not find parse γI =Mi and add (i,Mi,⊥,⊥) in Ljoin and return ;

4 : (state′′S , state
′
M, γS)← Join(Mi, stateS , stateM, γI);

5 : Store (i,Mi, state
′′
S , state

′
M) in Ljoin;

6 : if γS = concluded then

7 : svti ← state′′S , store (i,Mi, state
′
M, svti, ∅) in Lusr; return (γS , svti);

8 : else return γS .

9 : Upon query (sign, i, bsn,M, SigRL) :

10 : if (i, ∗, ∗, ∗, ∗) /∈ Lusr then Bad←true;

11 : else retrieve (i,Mi, statei, svti, Bi) ∈ Lusr;
12 : (state′i, σ)← Sig(Mi, statei, svti, bsn,M, SigRL);

13 : Update (i,Mi, state
′
i, svti, Bi ∪ {bsn});

14 : if post = 0 or i 6∈ {i0, i1} return σ else let i = iβ and β ∈ {0, 1};
15 : if bsn = bsn∗ then Bad←true;

16 : Let i = i1−β , and retrieve tuple (iβ ,Miβ , stateiβ , svtiβ , Biβ) ∈ Lusr;
17 : (state′iβ , σ̃)← Sig(Miβ , stateiβ , svtiβ , bsn,M, SigRL);

18 : Update (iβ ,Miβ , state
′
iβ
, svtiβ , Biβ ∪ {bsn}) in Lusr;

19 : if ⊥ ∈ {σ, σ̃} then Bad←true; endif return σ;

20 : Upon query (corrupt, i) :

21 : if post = 1 ∧ i ∈ {i0, i1} then Bad←true;

22 : else retrieve (i,Mi, statei, svti) from Lusr;

23 : move the tuple from Lusr to Lcor;

24 : return (statei, svti).

Fig. 1: Subversion-resilient anonymity experiment.

11

the challenge signature, the adversary may not ask for a signature by any of the challenge platforms
on basename bsn∗.

Technical details. The structure is the one depicted earlier: the adversary chooses the group
public key on input the public parameters and then starts interacting with the oracle C. The exper-
iment maintains lists Ljoin, Lusr, Lcorr to bookkeep information on the state of the Join protocol
sessions, and the list of non-corrupted and corrupted platforms, respectively. Also, it maintains a
flag Bad, initialized to false, which is turned to true whenever the adversary violates the rules of the
experiments (see below).

At some point the adversary outputs a message M∗, a basename bsn∗, and two indices i0, i1,
along with a signature revocation list SigRL∗; it receives a sanitized signature generated using the
subverted signer Mib . In line 8 of Expanon

A,Π(λ, b) we ensure that the adversary did not previously
query for a signature with basename bsn∗ by one of the challenge platforms; if that is the case, the
adversary could trivially win by using the Link algorithm. In line 11 of Expanon

A,Π(λ, b) we ensure that
both challenge platforms generate valid signatures, after sanitization. Indeed if a difference would
occur (e.g., one of them is ⊥), the adversary could trivially win the game. For example, this would
be the case if the SigRL chosen by A would contain a signature from, e.g., Mi0 . Similar checks are
done in lines 15–19 of the C oracle upon a signing query that involves one of the challenge platforms,
say i1−β . The code of those lines essentially ensure that the queried basename is not the challenge
one, and that the other challenge platform iβ would generate a signature on the same message M
that is valid iff so is the one generated by i1−β . Again if such a difference would occur the adversary
could trivially distinguish and win the experiment. Similarly to the other case, this could occur if
the queried SigRL contains a signature of (only) one of the challenge platforms.

We stress that the mechanism that uses the verification tokens is necessary. Indeed, consider
the definition above where the svt and the proof πσ are missing. An attacker can first performs two
join protocols with two subverted machines M̃1 and M̃2 with hardcoded secret keys s̃k1 (resp. s̃k2)
that during joining time act honestly, thus obtaining new fresh secret keys, but that compute valid
signature using the hardcoded secret keys. Suppose the scheme has a secret-key based revocation
mechanism, then the adversary that knows s̃k1 and s̃k2 can easily distinguish which machine pro-
duced the signature. In particular, it could verify the challenge signature using the revocation list
{s̃k1}. Because the signatures are anonymous, the sanitizer, which only posses public information,
has no way to identify that a different secret key has been used and avoid this attack.

Finally we notice that the model without verification token mechanism, after some necessary
cosmetic changes, fits with the cryptographic reverse firewall framework. In the lingo of [22], the
sanitizer of a scheme satisfying the anonymity property which works without the verification token
mechanism, is a cryptographic reverse firewall that weakly preserve the anonymity property for the
signer S.

Another aspect of the anonymity experiment that we would like to point out is that the adversary
receives the verification token immediately after the Join protocol is over. This models the fact the
adversary could have access to the internal state of an honest sanitizer (except for its random tape),
and this does not break anonymity.

Subversion-Resilient Unforgeability. This notion formalizes the idea that an adversary who
does not control the issuer cannot generate signatures on new messages on behalf of non-corrupted
platforms. To model subversion attacks, we let the platform signerMi be an adversarially specified
program. The sanitizer Si is instead honest (unless the platform is fully corrupted).

12

Here we provide an intuition of the notion. The idea is that the adversary receives the group
public key, and it can do the following: (1) ask platforms with subverted signers to join the system;
(2) ask corrupted platforms to join the system; (3) ask platforms with subverted signer to sign
messages; (4) corrupt platforms. For (1), it means that the adversary specifies the code of a signer
Mi and that signer together with sanitizer Si, run the Join protocol where both the issuer and Si
are controlled by the challenger. For (2), the adversary runs the Join protocol with the challenger
playing the role of the issuer, whereas both the signer Mi and the sanitizer Si are fully controlled
by the adversary. For (3), the adversary asks a platform that joined the system to create a signature
using the subverted signing algorithm (specified in Mi at Join time), this signature is sanitized by
Si and given to the adversary. Finally, (4) simply models a full corruption of the platform in which
the adversary learns the secret key ski obtained by Mi at the end of its Join protocol14

The adversary’s goal is to produce a valid signature on a basename-message tuple bsn∗,M∗. On
the one hand, we cannot require the tuple bsn∗,M∗ to be fresh, since it is reasonable to assume
that multiple platforms may sign the same bsn∗,M∗. On the other hand, strong unforgeability
is impossible, as we require that the signatures must be valid before and after sanitization. To
satisfy these two apparently contrasting requirements simultaneously, we instead require that the
adversary’s forgery does not link to any of the other queried signatures on the same basename-
message tuple. This essentially guarantees that the forgery is not a trivial rerandomization of
signature obtained through a signing query.

Since an SR-EPID is a (kind of) group signature and in the above game the adversary may have
learnt the secret keys of some group members, we add some additional checks to formalize what is a
forgery, namely to avoid trivial attacks that are unavoidable in this model. Intuitively, we want that
the signature must verify with respect to a private-key revocation list PrivRL∗ (resp. signature-based
revocation list SigRL∗) that includes the secret keys of (resp. a signature from) all corrupted group
members. These corrupted group members include both the ones that honestly joined the system
and were later corrupted, and those that were already corrupted (i.e., adversarially controlled) at
join time. Modeling which keys should be revoked is not straightforward though. The first issue is
that in case of a corrupted platform joining the group, the challenger does not know what is the key
obtained by the adversary. Essentially, unless we revoke exactly that key or a signature produced
with that key, the adversary is able to create valid signatures on any message of its choice. The
second issue is similar and involves cases when a platform with a subverted signer joins the group:
the challenger obtains a secret key ski from the signer Mi at the end of the Join protocol, but Mi

is subverted and thus we have no guarantee that ski is the “real” secret key.15 To define forgeries,
we solve these issues by assuming the existence of an extractor that, by knowing a trapdoor and
seeing the transcript of the Join protocol between the issuer and the sanitizer, can extract a token
uniquely linkable (via an efficient procedure) to the secret key that is supposed to correspond to such
transcript. This definition is close to the notion of uniquely identifiable transcripts used by [6] for
DAA schemes. We stress that the extractor does not exist in the real world and is only an artifact
of the security definition. 16 A practical interpretation of our definition is that unforgeability is
guaranteed under the assumption that the revocation system is “perfect”, namely that one revokes

14 Here the corruption is adaptive in the sense that the platform first joined honestly and later can be
corrupted by the adversary but we assume secure erasure of the previous states of the sanitizer.

15 For instance, Mi may store locally only an obfuscated or encrypted version of the secret key.
16 More precisely, an extractor does not exist if in the real world the Init algorithm is realized in a trusted

manner, akin to CRS generation in NIZK proof systems.

13

all the secret keys, or signatures produced by those secret keys, that an adversary obtained by
interacting with the issuer in the Join protocol.

We formalize subversion-resilient unforgeability for SR-EPID via the experiment of Fig. 2, and
we formally define unforgeability as follows.

Definition 2. Consider the experiment described in Fig. 2. We say that an SR-EPID Π is un-
forgeable if there exist PPT algorithms CheckTK, CheckSig, and a PPT extractor E = (E0, E1) such
that the following properties hold:

1. For any pair of keys (gpk, isk) in the support of Setup(pub) and for any (even adversarial)
tk, sk1, sk2 it holds (CheckTK(gpk, sk1, tk) = 1 ∧ CheckTK(gpk, sk2, tk) = 2) ⇒ sk1 = sk2.
(Namely, any tk is uniquely associated to one and only one sk.)

2. For any pair of keys (gpk, isk) in the support of Setup(pub) and for any (even adversarial)
tk, sk,M, bsn, σ,SigRL,PrivRL such that Vf(gpk, bsn,M, σ, SigRL,PrivRL) = 1 and Vf(gpk, bsn,M,
σ, SigRL,PrivRL∪{sk}) = 0, it is always the case that CheckTK(gpk, sk, tk) = 0∨CheckSig(gpk, tk, σ) =
1. (Namely, the token tk and the algorithm CheckSig allow to verify if a signature comes from
a specific secret key.)

3. For any PPT adversary A, Advunf
A,E,Π(λ) := Pr

[
Expunf

A,E,Π(λ) = 1
]
∈ negl(λ).

4. The distribution {pub $← Init(1λ)}λ∈N and {pub|pub, tp $← E0(1λ)}λ∈N are computationally in-
distinguishable.

Technical details. Besides the use of the extractor, the security experiment is rather technical
in some of its parts. Here we explain the main technicalities. As mentioned earlier, the structure of
the experiment is that the adversary receives the group public key and then starts interacting with
the oracle. The experiment maintains lists Ljoin, Lusr, Lcorr, Lmsg to bookkeep information on the
state of the Join protocol sessions, the list of uncorrupted and corrupted platforms respectively, and
the list of the messages on which the adversary obtained signatures.

After interacting with the oracle, the adversary outputs a message M∗, a basename bsn∗, a
signature σ∗ and revocation lists PrivRL∗,SigRL∗. The adversary wins if either event (4), or the
conjunction of events (1), (2) and (3) occur. Intuitively, event (4) means that the adversary has
“fooled” the extractor. Namely, the adversary produced a secret key sk (provided in the private-
key revocation list PrivRL∗) that the algorithm CheckTK recognizes as associated to a token tk
extracted by E1, but sk is not a valid signing key. In other words, our definition requires that any
secret key17 extracted by E1 should be valid. For the other winning case, events (2) and (3) are
a generalization of the classical winning condition of digital signatures, i.e. where the adversary
returns a valid signature on a new message. The conjunction of event (2) and (3) are more general
than the classical unforgeability notion because instead of considering as new just the message, we
also include the basename, and, more importantly, the fact that the forged signature apparently
comes from a machine that either has never been set up or that has never signed the basename-
message tuple.

Event (1) instead is there to avoid trivial attacks due to the possibility of corrupting group
members. Basically, (1) ensures that for any corrupted platform we have either its secret key in
PrivRL∗ or a signature produced by that platform in SigRL∗. For the latter statement to be efficiently
checkable in the experiment we require the existence of an algorithm CheckSig for this purpose and
that works with the token tk extracted by E1.

17 Precisely, E extracts a token tk linked to sk.

14

Experiment Expunf
A,E,Π(λ):

1 : Ljoin, Lusr, Lcorr, Lmsg ← ∅; (pub, tp)← E0(1λ); (gpk, gsk)
$← Setup(pub);

2 : (bsn∗,M∗, σ∗,PrivRL∗, SigRL∗)← A(gpk)C(sk,·);

3 : R← {tki : (i, ∗, ∗, ∗, tki) ∈ Lcorr};
4 : return 1 if and only if ((1) ∧ (2) ∧ (3)) ∨ (4) :

5 : (1) ∀tk∈R : (∃sk∈PrivRL∗ : CheckTK(gpk, sk, tk) = 1)

OR (∃σ ∈ SigRL∗ : CheckSig(gpk, tk, σ) = 1)

6 : (2) Ver(gpk, bsn∗,M∗, σ∗, SigRL∗,PrivRL∗) = 1

7 : (3) ∀(∗, bsn∗,M∗, σ) ∈ Lmsg : Link(gpk, bsn∗,M∗, σ∗,M∗, σ) = 0

8 : (4) ∃sk ∈ PrivRL∗ and tk ∈ R such that CheckTK(gpk, sk, tk) = 1

but CheckSK(gpk, sk) = 0.

Oracle C(gsk, ·)

1 : Upon query (honest join, i,Mi) :

2 : if ∃(i, ∗, ∗, ∗, ∗) ∈ Lusr ∪ Lcorr then return ⊥;

3 : 〈b, (b, svti), statei〉←JoinC,C,Mi〈(gpk, isk), gpk, gpk〉;
4 : let τ be the issuer-sanitizer transcript

5 : if b = 1 then tki←E1(tp, τ); Lusr←Lusr ∪ (i,Mi, statei, svti, tki);

6 : return svti

7 : Upon query (dishonestP join, i, γ) :

8 : if (i, ∗, ∗, ∗) 6∈ Ljoin, then Ljoin ← Ljoin ∪ (i, (gpk, gsk), ξ, ξ);

9 : Retrieve (i, stateI , ξ, τ) from Ljoin;

10 : (γI , state
′
I)← I.Join(stateI , γ); stateI ← state′I ; τ ← τ‖(γ, γI);

11 : Update (i, stateI , ξ, τ) in Ljoin;

12 : if γI = concluded, then tki ← E1(tp, τ); store (i,⊥,⊥,⊥, tki) in Lcorr.

13 : Upon query (dishonestS join, i,U , γ) : /∗ U ∈ {I,M}
14 : if (i, ∗, ∗, ∗) 6∈ Ljoin then Ljoin ← Ljoin ∪ (i, (gpk, gsk), ξ, ξ);

15 : Retrieve (i, stateI , stateM, τ) from Ljoin;

16 : (γU , state
′
U)←U .Join(stateU , γ); stateU←state′U ; if U = I then τ←τ‖(γ, γI);

17 : Update (i, stateI , stateM, τ) in Ljoin;

18 : if U = I ∧ γI = concluded, then :

19 : tki ← E1(tp, τ); ski ← stateM; store (i,Π.M, ski,⊥, tki) in Lusr.

20 : Upon query (sign, i, bsn,M, SigRL) :

21 : Retrieve the tuple (i,Mi, statei, svti, tki) from Lusr; if not found return ⊥;

22 : (state′i, σ)← Sig(Mi, statei, svti, bsn,M, SigRL);

23 : Lmsg ← Lmsg ∪ (i, bsn,M, σ); update(i,Mi, state
′
i, svti, tki); return σ.

24 : Upon query (corrupt, i) :

25 : Retrieve (i,Mi, statei, svti, tki) from Lusr; move the tuple from Lusr to Lcor;

26 : return statei.

Fig. 2: Subversion-resilient unforgeability experiment. The algorithm CheckSK(gpk, sk) is a short-
hand for the following process: sample a random message, generate a signature on it using sk and
output 1 iff the signature verifies. The symbol ξ denotes the empty string.

15

With honest join queries the adversary specifies the code of a signerMi, which then runs the
Join protocol with an honest issuer and an honest sanitizer controlled by the challenger. At the end,
if the issuer accepts, we extract a secret-key token tki from the transcript τ of the Join protocol,
and we store information about Mi, its state, the verification token and the extracted secret-key
token. The verification token svti is also returned to the adversary.

With dishonestP join queries the adversary can let a fully corrupted platform (i.e., both Mi

and Si are under its control) join the group. In this case, the adversary runs the join protocol
with the honest issuer controlled by the challenger: the oracle allows the adversary to start a Join
session and then sends one message, γ, at a time; lines 9–11 formalize this step-by-step execution
of the honest issuer on each message sent by the adversary on behalf of Si. At the end, if the issuer
accepts, we extract a secret-key token tki from the transcript τ of the Join protocol, and we store
this token in the list Lcorr of corrupted users.

With dishonestS join queries we consider the case in which the adversary fully controls the
sanitizer but the signer is not subverted. In this case, the oracle allows the adversary to run in
the Join protocol with the honest issuer and honest signer. This is done by letting the adversary
send messages to either M or I; lines 15–17 formalize this step-by-step execution of the honest
issuer and honest signer on each message γ sent by the corrupted sanitizer. At the end, if the issuer
accepts, we extract a secret-key token tki from the transcript τ of the Join protocol, and we store
all the relevant information in the list Lusr of honest platforms. Note that in this case we do not
necessarily know the verification token since this is received by the sanitizer, which is the adversary.

For sign queries, the oracle first checks that the platform has joined the system and if so it lets
the (possibly subverted) signer Mi generate a signature σ′ and corresponding proof π′σ. Next, if
svti 6= ⊥ the signature is sanitized and given to the adversary, otherwise a non-sanitized signature is
returned. Notice that the case svti = ⊥ (when i is in Lusr) can occur only if the platform joined the
system using a dishonestS join query, in which case the sanitizer is controlled by the adversary
but – we recall – the signer is not subverted.

Finally corrupt queries allow the adversary to corrupt an existing platform, which may have
joined through either a honest join or dishonestS join query. As a result, the adversary learns
the internal state of the signer, which is supposed to contain the secret key (note that the state of
the sanitizer, that is the verification token, was already returned after the Join).

Subversion-Resilient Unforgeability in the Random Oracle Model. In order to capture also
constructions in the random oracle model (ROM)—as ours—we provide a suitable adaptation of the
unforgeability definition. A dedicated ROM-based definition is needed in order to consider extractors
that may simulate, and program, the random oracle. The ROM definition is essentially the same as
Def 2, except that condition (3) is modified to account for the programmability powers granted to
the extractor. More in details, all the random oracle queries (both made by the adversary and by
the corrupted signerMi) are passed to the extractor, which is now a stateful machine; the extractor
must provide a view to the adversary that is indistinguishable from the real world view, where the
ROM outputs uniformly random strings. To formalize this, we consider a dummy extractor Ẽ that
(i) initializes the public parameters as done by the SR-EPID scheme, and (ii) it does not program
the ROM answers, but simply outputs uniformly random values. We additionally require that the
view of the adversary in an execution of the experiment with the extractor and the view of the
adversary in an execution of the experiment with the dummy extractor are indistinguishable.

Definition 3 (Unforgeability in the ROM.). Consider a game similar to Fig 2 where addi-
tionally the extractor can program the random oracle. Namely, all the queries to the random oracle

16

made by A are re-directed and answered by the extractor E. We say that an SR-EPID scheme Π
is unforgeable in the ROM if conditions (1), (2), (3) and (4) of Def. 2 hold, and additionally, the
view of the adversary at the end of the experiment Expunf

A,E,Π(1λ) and the view of the adversary at

the end of the experiment Expunf
A,Ẽ,Π(1λ) are computationally indistinguishable.

Comparison with Unforgeability of EPID. The notion of unforgeability defined above closely
follows the one defined for EPID in [8], with the following main differences. First, in [8] there is no
sanitizer. Second, in [8] the adversary cannot specify a subverted signer, namely honest join and
sign queries are executed according to the protocol description. Third, valid forgeries in [8] include
fresh signatures on messages already signed by the oracle. Such a forgery is not valid in our case
since signatures are sanitizable (essentially re-randomizable).

Notice that the unforgeability definition of [8] requires the adversary to return the secret key
obtained via dishonest join queries (called Join of type (i) in [8]). Nevertheless, the definition
does not enforce at any point that the adversary is returning the correct key. It is possible that the
authors are implicitly making the assumption that the adversary is honest at this stage, and this
what seems to be used in the security proof (where the reduction does not even look at the key
returned by the adversary but uses the key extracted from the PoK made by A during the Join
protocol). This is a quite strong assumption. If this assumption is not made we can show an attack.
A first performs a dishonest join query by playing honestly (the same works if this query is
honest join followed by corrupt), it obtains a key sk1. Next A performs another dishonest join

query where it plays honestly in the Join protocol, it obtains another key sk2 but returns to the
challenger sk1. When it comes to the forgery step, from the point of view of the challenger the key
that must be in PrivRL∗ is sk1 (maybe twice). This means that technically sk2 is not revoked and
thus the adversary can use it to create a signature that would pass the forgery checks and win the
game. Note that this attack works even if the forgery checks ensure that all sk in PrivRL∗ must be
“valid” (this check was proposed as part of the Revoke algorithm of the EPID construction).

In our definition of unforgeability we avoid the above attack by requiring a security property of
the Join protocol. Specifically, the join protocol is such that, if the execution of the protocol ends
successfully, then the platform must have learnt one (and only one) secret key. We formalize this by
requiring the existence on an extractor that can find this key by only looking at the transcript. In
this way, we avoid the unrealistic requirement that the adversary surrenders all the corrupted secret
keys. Notice that the existence of the extractor is only for definitional purpose, namely, only to asses
the security statement that “unforgeability holds if all the corrupted secret keys are revoked”.

Subversion-Resilient Non-frameability. This notion formalizes the idea that an adversarial
issuer should not be able to produce a signature that links to the identity of an honest platform.
Since “linking” is only possible across signatures, we treat non-frameability as the property that
guarantees that no adversary can output a signature that links to another signature output by an
honest platform.

We formalize subversion-resilient non-frameability for SR-EPID in a security experiment in
Fig. 3, and we formally define non-frameability as follows.

Definition 4. Consider the experiment described in Fig. 3. We say that an SR-EPID Π is non-
framable if for any PPT adversary A:

Advnon-fram
A,Π (λ) := Pr

[
Expnon-fram

A,Π (λ) = 1
]
∈ negl(λ).

17

Here we provide an intuition on the notion. Similar to the anonymity experiment, in the non-
frameability one, the adversary plays the role of the issuer and can do the following: (1) ask platforms
with subverted signers to join the system; (2) ask platforms with subverted signers to sign messages;
(3) corrupt platforms. For (1), it means that the adversary specifies the code of a signerMi and that
signer together with sanitizer Si, run the Join protocol where both the issuer and Si are controlled
by the challenger. For (2), a platform that joined the system creates a signature using the subverted
signing algorithm (specified inMi); this signature is sanitized by the honest sanitizer Si and given
to the adversary. Finally, (3) simply models a full corruption of the platform in which the adversary
learns the secret key ski obtained by Mi at the end of its Join protocol.

The adversary must output (i∗, bsn∗,M∗, σ∗) providing the victim platform index i∗ and a
basename-message-signature triple bsn∗,M∗, σ∗. The adversary wins the experiment if (1) σ∗ is a
valid signature for bsn∗,M∗, (2) the signature “links” to one of the signatures produced by the
oracle when queried on platform i∗, and (3) if the oracle has output a signature on bsn,M on behalf
of platform i and if bsn = bsn∗, then M 6= M∗. In the experiment, the challenger keeps a list Li
of signatures and their respective basename-message pairs, for each of the non-corrupted platforms
that have joined the group.

3 Building Blocks

3.1 Bilinear groups

An asymmetric bilinear group generator is an algorithm G that upon input a security parameter
1λ produces a tuple bgp = (p,G1,G2,GT , e,P1,P2), where G1,G2 and GT are groups of prime
order p ≥ 2λ, the elements P1,P2 are generators of G1,G2 respectively, e : G1 × G2 → GT is
an efficiently computable, non-degenerate bilinear map. In our construction we use Type-3 groups
in which it is assumed that there is no efficiently computable isomorphism between G1 and G2.
We use the bracket notation introduced in [15]. Elements in Gi, are denoted in implicit notation
as [a]i := aPi, where i ∈ {1, 2, T} and PT := e(P1,P2). Every element in Gi can be written as
[a]i for some a ∈ Zq, but note that given [a]i, it is in general hard to compute a ∈ Zq (discrete
logarithm problem). Given a, b ∈ Zq we distinguish between [ab]i, namely the group element whose
discrete logarithm base Pi is ab, and [a]i · b, namely the execution of the multiplication of [a]i
and b, and [a]1 · [b]2 = [a · b]T , namely the execution of a pairing between [a]1 and [b]2. Vectors
and matrices are denoted in boldface. We extend the pairing operation to vectors and matrices as
e([A]1, [B]2) = [A> ·B]T . All the algorithms we describe next take implicitly as input the public
parameters bgp.

3.2 Structure-Preserving Signatures

A signature scheme over groups generated by G is a triple of efficient algorithms (KGen,Sig,Ver).
Algorithm KGen outputs a public verification key vk and a secret signing key sk. Algorithm Sig
takes as input a signing key and a message m in the message space, and outputs a signature σ.
Algorithm Ver takes as input a verification key vk, a message m and a signature σ, and returns
either 1 or 0 (i.e., “accept” or “reject”, respectively). The scheme (KGen,Sig,Ver) is correct if for
every correctly generated key-pair vk, sk, and for every message m in the message space, we have
Ver(vk,m,Sig(sk,m)) = 1.

18

Experiment Expnon-fram
A,Π (λ)

1 : pub← Init(1λ); gpk← A(pub); Ljoin, Lusr, Lcorr ← ∅;
2 : (i∗, bsn∗,M∗, σ∗)← A(gpk)C(gpk,·);

3 : Retrieve the tuple (i∗,Mi∗ , statei∗ , svti∗ , Li∗) from Lusr;

4 : Output 1 if and only if all of the following conditions hold:

5 : (1) (i∗, ∗, ∗, ∗, ∗) ∈ Lusr,
6 : (2) Ver(gpk, bsn∗,M∗, σ∗, ∅) = 1,

7 : (3) ∃ 〈M, bsn, σ〉 ∈ Li∗ such that Link(gpk,M, σ,M∗, σ∗) = 1,

8 : (4) ∀ 〈M, bsn, σ〉 ∈ Li∗ : if bsn = bsn∗ then M 6= M∗.

Oracle C(gsk, ·)

1 : Upon query (join, i, γI) :

2 : Retrieve (i,Mi, stateS , stateM) from Ljoin, ;

3 : If not find parse γI =Mi and add (i,Mi,⊥,⊥) in Ljoin and return ;

4 : (state′′S , state
′
M, γS)← Join(Mi, stateS , stateM, γI);

5 : Store (i,Mi, state
′′
S , state

′
M) in Ljoin;

6 : if γS = concluded then

7 : svti ← state′′S , store (i,Mi, state
′
M, svti, ∅) in Lusr; return (γS , svti);

8 : else return γS .

9 : Upon query (sign, i, bsn,M, SigRL) :

10 : Retrieve (i,Mi, statei, svti, Bi) ∈ Lusr;
11 : (state′i, σ)← Sig(Mi, statei, svti, bsn,M, SigRL);

12 : Update (i,Mi, state
′
i, svti, Li ∪ {〈bsn,M, σ〉});

13 : return σ;

14 : Upon query (corrupt, i) :

15 : Retrieve (i,Mi, statei, svti) from Lusr; move the tuple from Lusr to Lcor;

16 : return (statei, svti).

Fig. 3: Subversion-resilient non-frameability experiment.

19

We say that a signature scheme (KGen,Sig,Ver) is existentially unforgeable under adaptive
chosen message attack (EUF-CMA) if for any PTT adversary A we have that:

Pr

[
Ver(vk,m, σ) = 1 ∧m /∈ Q :

(vk, sk)
$← KGen(G(1λ)),

(m,σ)← ASig(sk,·)(vk)

]
∈ negl(λ),

where Q is the set of messages queried byA to the signing oracle. A stronger notion of unforgeability,
named “strong” EUF-CMA or sEUF-CMA, further prevents the adversary to forge a new signature
on a message that has already been signed. This notion is captured by modifying the above definition
so that (m,σ) /∈ Q whereas Q is defined as the set of message-signature pairs stemming from the
adversary’s queries to the signing oracle. Finally, a signature scheme over groups generated by G
is structure-preserving [1] if (1) the verification key, the messages, and signatures consist of solely
elements of G1,G2, and (2) the verification algorithm evaluates the signature by deciding group
membership of elements in the signature and by evaluating pairing product equations.

3.3 Non-Interactive Zero-Knowledge Proof of Knowledge

A non-interactive zero-knowledge (NIZK) proof system for a relation R is a tuple NIZK =
(Init,P,V) of PPT algorithms such that: Init on input the security parameter outputs a (uniformly
random) common reference string crs ∈ {0, 1}λ; P(crs, x, w), given (x,w) ∈ R, outputs a proof π;
V(crs, x, π), given instance x and proof π outputs 0 (reject) or 1 (accept).

In this paper we consider the notion of NIZK with labels, that are NIZKs where P and V
additionally take as input a label L ∈ L (e.g., a binary string). A NIZK (with labels) is correct if for

every crs
$← Init(1λ), any label L ∈ L, and any (x,w) ∈ R, we have V(crs, L, x,P(crs, L, x, w)) = 1.

Definition 5 (Adaptive composable perfect zero-knowledge). A NIZK NIZK for relation
R satisfies adaptive composable perfect zero-knowledge if the following properties hold:

(i) There exists an algorithm Initzk that outputs crs, and a simulation trapdoor tps such that for
any sequence {bgpλ ← G(1λ)}λ≥0 and for any PPT distinguisher D

|Pr[D(crs) = 1 : (crs, tps)
$← Initzk(bgpλ)]

−Pr[D(crs) = 1 : crs
$← Init(bgpλ)]| ∈ negl(λ)

(ii) There exists a PPT simulator S such that for any (x,w) ∈ R, L ∈ L and all (crs, tps)
$←

Initzk(bgp), the proofs generated via π
$← S(tps, L, x) and π

$← P(crs, L, x, w) are identically
distributed.

Definition 6 (Adaptive extractable soundness). A NIZK NIZK for relation R is adaptive
extractable sound (Ext) if the following properties hold:

(i) There exists an algorithm Initsnd that outputs crs and an extraction trapdoor tpe such that for
any sequence {bgpλ ← G(1λ)}λ≥0 and for any PPT distinguisher D

|Pr[D(crs) = 1 : (crs, tps)
$← Initsnd(bgpλ)]

−Pr[D(crs) = 1 : crs
$← Init(bgpλ)]| ∈ negl(λ)

(ii) There exists a PPT algorithm E(tpe, x, π) such that every PPT adversary A:

Advext-sound
A,NIZK,E(λ) := Pr

[
Expext-sound

NIZK,A,E(λ) = 1
]
∈ negl(λ)

where the experiment is defined in Fig. 4.

20

Expder-priv
A,NIZK(λ):

bgp
$← G(1λ); b

$← {0, 1};
(crs, tps)

$← Initzk(bgp);
(L, x, π, T)← A(crs, tps);
Assert V(crs, L, x, π) = 1;

If b = 0 then π′
$← S(tps, L, Tx(x));

else π′
$← ZKEval(crs, L, π, T);

b′ ← A(π′);
Output b′ = b.

Expext-sound
A,NIZK,E(λ):

bgp
$← G(1λ);

(crs, tpe)
$← Initsnd(bgp)

(x, L, π)← A(crs); w ← E(tpe, L, x, π);
Output V(crs, L, x, π)=1∧(x,w) 6∈ R.

Fig. 4: The security experiments for the strong derivation privacy and adaptive extractable sound-
ness.

Malleable Proofs. We use the definitional framework of Chase et al [13] for malleable proof
systems.

For simplicity of the exposition we consider only unary transformations (see the aforementioned
paper for more details). Let T = (Tx, Tr) be a pair of efficiently computable functions, that we refer
as a transformation.

Definition 7 (Admissible transformations [13]). An efficient relation R is closed under a
transformation T = (Tx, Tw) if for any (x,w) ∈ R the pair (Tx(x), Tw(w)) ∈ R. If R is closed
under T then we say that T is admissible for R. Let T be a set of transformations. If for every
T ∈ T , T is admissible for R, then T is an allowable set of transformations.

Definition 8 (Malleable NIZK [13]). Let NIZK = (Init,P,V) be a NIZK for a relation R. Let
T be an allowable set of transformations for R. The proof system NIZK is malleable with respect
to T if there exists an PPT algorithm ZKEval that on input (crs, L, (x, π), T), where T ∈ T , L is a
label and V(crs, L, x, π) = 1, outputs a valid proof π′ for the statement x′ = Tx(x).

For malleable NIZKs one can define the property that one should not distinguish between “freshly”
generated proofs and derived ones. This property is formalized with the notion of derivation privacy.

Definition 9. Let NIZK = (Init,P,V,ZKEval) be a malleable NIZK argument for a relation R
and an allowable set of transformations T . We say that NIZK is strong derivation private if for
any PPT adversary A we have that

Advder-priv
A,NIZK(λ) :=

∣∣∣Pr
[
Expder-priv

A,NIZK(1λ) = 1
]
− 1

2

∣∣∣ ∈ negl(λ)

where Expder-priv is the game described in Fig. 4. Moreover, we say that NIZK is perfectly strong
derivation private (resp. statistically strong derivation private) when for any (possibly unbounded)
adversary the advantage above is 0 (resp. negligible).

Re-randomizable NIZKs. First we notice that the derivation privacy property implicitly says
that proofs are re-randomized (since outputs of ZKEval are indistinguishable from freshly generated
proofs). In the special case of a malleable NIZK where the allowable transformation is the identity
function we simply say that it is a re-randomizable NIZK and we omit the transformation from the
inputs of ZKEval.

21

4 Our SR-EPID Construction

In this section we describe our construction of a subversion-resilient EPID. We start by providing
a high-level explanation of our technique, next we describe the scheme, discuss how to instantiate
it efficiently, and prove its security.

An Overview of Our Scheme. We elaborate further on the overview from Sec. 1.1. Recall that
our construction follows the classical template similar to many group signature schemes to prove in
zero-knowledge the knowledge of a signature originated by the issuer. In particular: (I) The issuer I
keeps a secret key isk of a (structure-preserving) signature scheme. (II) The secret key of a platform
is a signature σsp on a Pedersen commitment [t]1 whose opening y is known to the signer only.
Following the description given in Sec. 1.1, the conjunction of σsp and [t]1 forms a blind signature
on y. (III) The signer generates a signature on a message M and basename bsn by creating a NIZK
with label (bsn,M) of the knowledge of a valid signature σsp made by I on message a commitment
[t]1 and the knowledge of the opening of such commitment to a value y. To realize the NIZK, our
idea is to use a random oracle H to hash the string bsn,M and use the output string as the common-
reference string of a (malleable) NIZK for the knowledge of the σsp, the commitment [t]1 and the
opening y = (y0, y1). Furthermore, to be able to re-randomize the signature, we make use the
re-randomizable NIZK. (IV) To support revocation and linkability the final signature additionally
contains the pseudorandom value [c1]1 := K(bsn) · y0, where K is a random oracle. More in details,
linkability is trivially obtained, as two signatures by the same signer and for the same basename
share the same value for [c1]1, while for (signature-based) revocation we additionally let the signer
prove that all the revoked signatures contain a [c1]1 of the form K(bsn) · y′0 where y′0 6= y0.

Specific Building Blocks. Our scheme works over bilinear groups generated by a generator G,
and it makes use of the following building blocks:

– A structure-preserving signature scheme SS = (KGensp,Sigsp,Versp) where messages are elements

of G1 and signatures are in G`11 ×G`22 .
– An re-randomizable NIZK NIZKsign for the relationship Rsign defined as:(gpk, [b]1,SigRL),

([t]1, σsp, [y]2)
:

[b]1 ∈ span([1, y0]T1)
[t]t = [hT · y]t
Versp(pksp, [t]1, σsp) = 1
∀i : [bi]1 6∈ span([1, y0]T1)

where SigRL = {[bi]1}ri=1, gpk = ([h]1, pksp), and y = (y0, y1)T. To simplify the exposition, in the
description of the protocol below we omit gpk (the public key of the scheme) from the instance
and we consider ([b]1,SigRL) as an instance for the relation.

– A malleable and re-randomizable NIZK NIZKcom for the following relationship Rcom and set of
transformations Tcom defined below:

Rcom := {([h]1, [t]1), [y]2 : [t]t = e([h]1, [y]2)}

Tcom :=

{
T = (Tx, Tw) :

Tx([h]1, [t]1) = [h]1, [t+ h2 · y′]1
Tw([y]2) = [y0, y1 + y′]T2

}
Namely, the relation proves the knowledge of the opening of a Pedersen’s commitment (in G1)
whose commitment key is [h]1. The transformation allows to re-randomize the commitment by
adding fresh randomness.

22

– A NIZKsvt for the relation Rsvt = {[x, xy, z, zy]1, y : x, y, z ∈ Zp}.
– Three cryptographic hash functions H, J and K modeled as random oracles, where H : {0, 1}∗ →
{0, 1}λ, J : {0, 1}∗ → {0, 1}λ and K : {0, 1}λ → G1.

Our SR-EPID Scheme. Now we are ready to describe our scheme.

Init(1λ)→ pub: Generate description of a type-3 bilinear group bgp
$← G(1λ), the common

reference string crssvt
$← NIZKsvt.Init(bgp), and sample h

$← Z2
p. Output

pub = (bgp, crssvt, [h]1)18

Setup(pub)→ (gpk, isk): sample (sksp, pksp)
$←KGensp(bgp), and set isk := sksp, gpk := pksp.

JoinI,H,M〈(gpk, isk), gpk, gpk〉 → 〈b, (b, svt), (sk, svt)〉: the platform P = (M,H) and issuer I start
an interactive protocol that proceeds as described below:

1. I samples id
$← {0, 1}λ and send id to H and M. All the parties compute crscom ← J(id).

2. H samples y0, c
$← Zp, sets svt := [c, cy0]1 and sends (y0, svt) to M.

3. M does as described below:
– Sample yM

$← Zp and compute [tM]1 :=(y0, yM) · [h]1;
– πM ← NIZKcom.P(crscom, ([h]1, [tM]1), [y0, yM]2);
– Send ([tM]1, πM) to H.

4. H checks NIZKcom.V(crscom, ([h]1, [tM]1), πM) = 1; if the check passes:

– Sample yH
$← Zp and set [t]1 := [tM + h2 · yH]1;

– Compute πH ← NIZKcom.ZKEval(crscom, πM, [yH]1);
– Send yH to M and ([t]1, πH) to I.

5. I checks NIZKcom.V(crscom, ([h]1, [t]1), πH) = 1, and if the check passes then I computes
σsp ← Sigsp(sksp, [t]1) and sends σsp to M (through H).

6. M does as described below:
– Compute y1 = yM + yH, and set y := (y0, y1)T;
– Verify (1) [h]T1 · y = [t]1 and (2) Versp(pksp, [t]1, σsp) = 1
– If so, send the special message completed to I (through H) and output sk := ([t]1, σsp,y)

and svt.
7. H outputs svt.
8. If I receives the special message completed then outputs it.

Sig(gpk, sk, svt, bsn,M, SigRL)→ (σ, πσ): On input gpk, sk = ([t]1, σsp,y), the base name
bsn ∈ {0, 1}λ, the message M ∈ {0, 1}m, and a signature revocation list
SigRL = {(bsni,Mi, σi)}i∈[n], generate a signature σ and a proof πσ as follows:
1. Set [c]1 ← K(bsn) and set [c]1 := [c, c · y0]1;
2. Compute π ← Πsign.P(H(bsn,M), ([c]1,SigRL), ([t]1, [σsp]1, [y]2));
3. Compute πσ ← Πsvt.P(crssvt, (svt, [c]1), y0);
4. Output σ := ([c]1, π) and πσ.

Sanitize(gpk, bsn,M, (σ, πσ),SigRL, svt): Parse σ = ([c]1, π) and proceed as follows:
1. If Πsign.V(crssign,H(bsn,M), ([c]1,SigRL), π) = 0 or Πsvt.V(crssvt, (svt, [c]1), πσ) = 0 then

output ⊥.
2. Re-randomize π by computing π′ ← Πsign.ZKEval(H(bsn,M), ([c]1,SigRL), π)

18 Notice that we could consider a stronger model of subversion where the adversary could additionally
subvert the public parameters. Our scheme, indeed, could be proved secure under this stronger model if
we generate [h]1 using the ROM and use NIZKsvt with subversion-resistant soundness [3].

23

3. Output σ′ := ([c], π′).
Ver(gpk, bsn,M, σ,PrivRL,SigRL): Parse σ = ([c]1, π) and PrivRL := {f1, . . . , fn1

}. Return 1 if and
only if:
1. K(bsn) = [c]1,
2. Πsign.V(H(bsn,M), ([c]1,SigRL), π) and
3. for ∀sk ∈ PrivRL : let sk = ([t]1, σsp, (y0, y1)) check (−y0, 1) · [c]1 6= [0]1.

Link(gpk, bsn,M1, σ1,M2, σ2)→ 0/1. Parse σi = ([ci]1, πi) for i = 1, 2. Return 1 if and only if
[c1]1 = [c2]1 and both signatures are valid, i.e., Ver(gpk, bsn,M1, σ1) = 1 and
Ver(gpk, bsn,M2, σ2) = 1.

Remark 1 (On correctness without verication list). Additionally, we assume that for any crs, (gpk, [b]1,
SigRL) and π if NIZKsign.V(crs, (gpk, [b]1,SigRL), π) = 1 then NIZKsign.V(crs, (gpk, [b]1, ∅), π) =
1. We notice that, by only minor modifications of the verification algorithm, this property holds for
GS-NIZK proof system for the relation Rsign. The reason is that GS-NIZK is a commit-and-prove
NIZK system where each group element of the witness is committed separately, and where there
are different pieces of proof for each of the equation in the conjunction defined by the relation.

4.1 Efficiency

A suitable SPS for our construction of SR-EPID is the one in [14] (see Section 5.3 of the reference).
It features signatures in G2

1 × G2 and verification requires 2 PPEs and 6 pairings. To evaluate
efficiency of our construction we look at Rsign where we have SigRL = {[bi]1}ri=1, gpk = ([h]1, pksp),

and y = (y0, y1)T and we rely on [15] (Table 1, where we consider ` = 2 and k = 1). We are
committing to [t]1, σsp, [y]2: since σsp has size 3 and [y]2 has size 2, we have a total of 6 variables,
thus the commitment is composed by 12 elements (since we are using ` = 2). Looking at the
proof, we have the following relations: [b]1 ∈ span([1, y0]T1) is a linear equation, so the proof has
size k+ 1 = 2; [t]t = [hT · y]t is a PPE and hence requires ` · (k+ 1) = 4 group elements. Moreover,
Versp(pksp, [t]1, σsp) = 1 is the verification of a signature which requires 2 PPEs to be verified, for

a total of 8 elements. Finally, ∀i : [bi]1 6∈ span([1, y0]T1) consists in n linear equations, for a total
of 2n elements (2 elements for each signature in SigRL). It follows that the resulting SR-EPID has
signatures of size 28+2n group elements, where n is the number of signatures in SigRL. The original
EPID scheme [8] has signatures of size 8 + 5n. We note that signatures produced by our scheme,
as well as the ones in related works [8,9], have sizes that are linear in the size of the revocation list
SigRL. This is because each signature σ carries a proof that the private key used to produce σ is
different from any of the keys used to produce any of the signatures in SigRL. We leave finding a
scheme with signatures sublinear in |SigRL| (e.g., constant or logarithmic) as an interesting open
problem. Nevertheless, note that in practical scenarios, if SigRL becomes too large it may be cheaper
to have non-revoked members re-join the group.

4.2 Proof of Security

We use of the following standard number-theoretic assumption:

Assumption 2 (XDH Assumption). Given a bilinear group description bgp
$← G(1λ), we say

that the External Diffie-Hellman (XDH) assumption holds in Gβ where β ∈ {1, 2} if the distribution

[x, y, xy]β and the distribution [x, y, z]β where (x, y, z)
$← Z3

p are computationally indistinguishable.

24

Theorem 1. If SS is EUF-CM secure, both NIZKsign and NIZKcom are adaptive extractable
sound, perfect composable zero-knowledge and strong derivation private, NIZKsvt is adaptive ex-
tractable sound, composable zero-knowledge, and both the XDH assumption holds in G1 and the
Assumption 1 holds, the SP-EPID presented above is unforgeable in the ROM.

We first give a proof sketch. To prove unforgeability we need to define an extractor: its main
idea is to program the random oracle J to output strings (used as common reference strings in the
protocol) that come with extraction trapdoors. Recall that by the properties of the NIZK, such
strings are indistinguishable from random strings. Then, whenever required, the extractor can run
the NIZK extractor over the NIZK proof provided by the platform during the join protocol to obtain
a value [y]2. Finally, looking at the transcript of the join protocol, the extractor can produce the
token tk = ([t]1, σsp, [y]2). Notice that the created token looks almost like the secret key with the
only difference that, in the secret key, the value y is given in Z2

q.
19 It is clear that the token is

uniquely linked to the secret key.
With this extractor, we proceed with a sequence of hybrid experiments to prove unforgeability.

In the first part of the hybrid argument (from H0 to H6 in the formal proof) we exploit the
programmability of the random oracle to puncture the tuple (bsn∗,M∗) selected by the adversary
for its forgery. In particular, we reach a stage where we can always extract the witnesses from valid
signatures for (bsn∗,M∗), while for all the other basename-message tuples the challenger can always
send to the adversary simulated signatures. To reach this point, we make use of the strong derivation
privacy property of the NIZK proof system (which states that re-randomization of valid proofs are
indistinguishable from brand-new simulated proofs for the same statement). Specifically, we can
switch from signatures produced by the subverted hardware and re-randomized by the challenger
of the experiment to signatures directly simulated by the challenger. The latter cutoff any possible
channels that the subverted machines can setup with the adversary using biased randomness.

At this point we can define the set Qsp of all the messages [t]1 signed by the challenger (im-
personating the issuer) using the structure-preserving signature scheme. Notice that our definition
allows the adversary to query the challenger for a signature on the message (bsn∗,M∗) itself. As the
signatures for such basename-message tuple are always extractable, the challenger has no chances
to simulate such signatures. However, by the security definition, the adversary is bound to output
a forgery that does not link to any of the signatures for (bsn∗,M∗) output by the challenger. We
exploit this property together with the fact that two not-linkable signatures must have different
value for y0, to show that the forged signature must be produced with a witness that contains a
fresh value [t∗]1 that is not in Qsp. Slightly more technically, we can reduce this to the binding
property20 of the Pedersen’s commitment scheme that we use.

Now, we can divide the set of the adversaries in two classes: the ones which produce a forged
signature where [t∗]1 is in Qsp and the ones where [t∗]1 is not in Qsp. For the latter, we can easily
reduce to the unforgeability of the structure preserving signature scheme. For the former, instead,
we need to proceed with more caution.

First of all, we are assured by the previous step that adversaries from the first class of adversaries
would never query the signature oracle on (bsn∗,M∗). Secondly, we use the puncturing technique
again, however, this time we select the platform (let it be the platform number j∗) that is linked
to the forged signature. By the definition of the class of adversaries this platform always exists. For

19 In our concrete instantiation we use GS-NIZK proof system, for which extraction in the source groups is
more natural and efficient.

20 To be more precise, in the formal proof, we rely directly on the XDH assumption (see hybrid H7).

25

this platform we switch the common-reference string used in the join protocol to be zero-knowledge.
Once we are in zero-knowledge mode, we can use strong derivation privacy to make sure that the join
protocol does not leak any information about the secret key that the platform computes (even if the
machine is corrupted). At this point the secret key of the j∗-th platform is apparently completely
hidden from the view of the adversary, in fact: (1) all the signatures are simulated and (2) the join
protocol of the j-th platform is simulated. However, the j∗-th platform is still using a subverted
machine, which, although cannot communicate anymore using biased randomness with the outside
adversary, still receives the secret key. We show that we can substitute this subverted machine with
a well-behaving machine that might abort during the join protocol but that, if it does not so then
it always sign every basename-message tuple received (here we rely on Assumption 1).

The last step is to show that such forgery would break the hiding property of the Pedersen’s
commitment scheme that we make use of.

Proof. Given an adversary A for the unforgeability game, we assume, w.l.g. that if the adversary
sends the query (sign, ∗, bsn,M, ∗) for some bsn,M then the adversary has already queried the
random oracle H on the tuple (bsn,M). Notice that this assumption is without loss of generality21.

Given a PPT adversary A we define the extractor E . Let Ecom be the extractor for the NIZKcom.
The extractor E is defined below:

Extractor E(·):
– At the first call initialize the database DRO as empty and generates the group parameter

bgp
$← G(1λ).

– Upon input (RO,H, x) check if (H, x, y,⊥) exists in DRO and if so return y, else sample

y
$← {0, 1}λ, add the tuple (H, x, y,⊥) into the database and return y.

– Upon input (RO, J, x) check if (J, x, crs, tpe) exists in DRO and if so return crs1, else

sample crs, tpe
$← NIZKcom.Initsnd(bgp), add the tuple (J, x, crs, tpe) into the database

and return crs1.
– Upon input (extract, τ) parse the transcript τ as described by the messages sent in the

join protocol and find the value id, lookup for the tuple (J, id, crs, tpe) into the database
DRO, and if it does not exist then it output ⊥. Else, find the message ([t]1, πS) from S,
run the extractor [y]2 ← Ecom(tpe, πS), find the message σsp sent from the issuer I, and
output tk = ([t]1, σsp, [y]2).

We define the CheckTK algorithm. The algorithm given in input gpk, sk and tk parses sk as
([t]1, [σsp]1,y) and check if tk = ([t]1, [σsp]1, [y]2). We define the CheckSig algorithm. The algorithm
given in input gpk, tk and a signature σ, parses tk = ([t]1, [σsp]1, [y0, y1]2) and σ = ([c0, c1]1, π) and
return 1 if and only if e([c0]1, [y0]2) = e([c1]1, [1]2). The property 1 is obviously true, in fact, the
function that map x ∈ Zp to [x]2 ∈ G is injective, moreover, the property 2 is true too, in fact,
the step (3) of the verification algorithm checks that [c0]1y0 = [c1]1, which is the same of verifying
e([c0]1, [y0]2) = e([c1]1, [1]2).

In the following we define two sequences of hybrid experiments. In the first sequence of hybrids
experiment we consider the random variable viewA,i that is the view of the adversary A in the
hybrid experiment H′i. Recall that Def. 3 also requires to compare the view of the adversary in the

21 Given an adversary A′ that does not respect this rule, we can always define a new adversary A that
runs internally A′ and whenever it receives a message (sign, ∗, bsn,M, ∗) first query the RO H and then
forward the signing query.

26

unforgeability experiment with the dummy extractor and the same view with the extractor defined
above.

Let H′0(λ) := Expunf
A,Ẽ,Π(λ), namely the experiment run with the dummy extractor that answers

the random-oracle queries as a random oracle would do.

Hybrid H′1(λ). Let H′1(λ) := Expunf
A,E′,Π(λ), where E ′ is the same as E , as defined above, but

where when it is called upon input (extract, τ) simply it returns ⊥.

Lemma 1. For any PPT D we have |Pr [D(viewA,1) = 1]− Pr [D(viewA,0) = 1] | ∈ negl(λ).

Proof. The proof of the lemma follows by the composable zero-knowledge property. Details omitted.

Hybrid H′2(λ). Let H′2(λ) := Expunf
A,E,Π(λ).

Lemma 2. For any PPT D we have Pr [D(viewA,2) = 1] = Pr [D(viewA,1) = 1].

Proof. Notice that the difference between the two hybrids is that in the second the extractor
additionally computes the tokens tk. However, the tokens are never add in the view of the adversary.

By the two lemmas above and the triangular inequality we already have the extra condition of the
unforgeability in the ROM (Def 3).

In the next sequence of hybrids we will gradually modify the winning condition of the adversary.
Recall that in the unforgeability experiment of Fig 2, we defined the winning condition of the
adversary to be W := ((1) ∧ (2) ∧ (3)) ∨ (4). For notation, we call Wi the winning condition in
the hybrid experiment Hi, we set W0 := W and, whenever we don’t mention it explicitly, we set
Wi+1 := Wi. Let H0(λ) := Expunf

A,E,Π(λ).

Hybrid H1(λ). Let H1 be the same as H0 but where the winning condition is changed. In partic-
ular, the condition (4) is omitted22, thus the winning condition is W1 := (1) ∧ (2) ∧ (3).

Lemma 3. |Pr [H1(λ) = 1]− Pr [H0(λ) = 1] | ∈ negl(λ).

Proof. We reduce to the adaptive knowledge soundness of the NIZKcom. Moreover we rely on the
perfect correctness of NIZKsign and the perfect correctness of the signature scheme SS. The ex-
tractor E computes [y]2 using the knowledge extractor of NIZKcom and output tk = ([t]1, σsp, [y]2),
since [t]1, σsp are generated by the issuer I they form a valid message-signature pair. Suppose that
exists sk ∈ PrivRL∗ linked to tk, therefore sk = ([t]1, σsp,y) and that CheckSK(gpk, sk) = 0, there-
fore, either [h> ·y]T 6= [t]T , but this would violate the adaptive knowledge soundness of NIZKcom,
or the latter holds but, the signature ([c]1, π) for a random message M does not verify, but this
would violate either the correctness of NIZKsign or the correctness of SS.

Hybrid H2(λ). Let H2 be the same as H1 but where the winning condition is changed. In particu-
lar, let qH be an upper bound on the number of oracle queries made by A to H, w.l.g. we assume the

adversary does not query twice the RO with the same input. The hybrid samples an index i∗
$← [qH]

and a common-reference string crs∗, tpe
∗ $← NIZKsign.Initsnd(bgp). At the i∗-th call to the random

oracle H it set the output of the random oracle to be crs∗. Moreover, consider the condition (5)
defined as:
22 Recall that condition (4) states that ∃sk ∈ PrivRL∗ and tk ∈ R, where R is the set of secret-key tokens

of the corrupted users, such that CheckTK(gpk, sk, tk) = 1 but CheckSK(gpk, sk) = 0.

27

(bsn∗,M∗) (the basename-message tuple of the forgery) is queried to the random oracle H
at the i∗-th query.

The new winning condition is W2 := W1 ∧ (5).

Lemma 4. Pr [H2(λ) = 1] ≥ Pr [H1(λ) = 1] /qH − negl(λ).

Proof. First consider the intermediate hybrid H2,1 equal to H2 (we sample crs∗ and assign it to the
i∗-th query to the random oracle), but where we do not change the winning condition. By property
(i) of Def. 6 (extractable sound CRSs are indistinguishable from random strings) we know that
|Pr [H2,1(λ) = 1]− Pr [H1(λ) = 1] | ∈ negl(λ).

Notice that Pr [H2(λ) = 1] = Pr [H2,1(λ) = 1 ∧ (5)] = Pr [H2,1(λ)] Pr [(5)], in fact, the view of
the adversary is independent of the random variable i∗. Moreover, the probability of (5) is 1/qH.

Hybrid H3(λ). Let H3 be the same as H2 but where the winning condition of the adversary
is changed. In particular, after the adversary outputs its forgery the hybrid additionally computes
([t∗]1, [σ

∗
sp]1, [y

∗]2)← Esign(tpe∗, π∗), where (π∗, [c∗]1) is the forged signature. The winning condition
is changed to W3 := W2 ∧ (6) where (6) is defined as:

Check that Versp(pksp, [t
∗]1, [σ

∗
sp]1) = 1 and [t∗]t = [hT · y∗]t and for any ([c′0, c

′
1]1, π

′) ∈
SigRL∗ we have [c′1]t 6= [c′0y

∗
0]t.

Lemma 5. Pr [H3(λ) = 1] = Pr [H2(λ) = 1].

Proof. We reduce to adaptive extractable soundness of NIZKsign. Notice that by the Shoup’s differ-
ence lemma we need to bound the probability of the event W2∧¬(6), namely that the hybrid H2 out-
puts 1 but H3 does not. The event W2∧¬(6) implies that the proof π∗ for the statement [c∗]1,SigRL

∗

and with label y∗ does verify but (by the condition ¬(6)) either the Versp(gpk, [t
∗]1, σsp) = 0 or

[t]t = [hT · y]t exists ([c′0, c
′
1]1, π

′) ∈ SigRL∗ where [c′1]t = [c′0y
∗
0]t, which violates the soundness of

the proof system.

Hybrid H4(λ). Let H4 be the same as H3 but where we program differently the random oracle H.

In particular, upon the i-th query (RO,H, x) where i 6= i∗ sample crs, tps
$← NIZKsign.Initzk(bgp)

and set the tuple (H, x, crs, tps) into the database DRO.

Lemma 6. |Pr [H4(λ) = 1]− Pr [H3(λ) = 1] | ∈ negl(λ).

Proof. The proof of the lemma follows by property (i) of Def. 5 (adaptive composable perfect
zero-knowledge) of NIZKsign.

Hybrid H5(λ). Let H5 be the same as H4 but where the queries (sign, ∗, ∗, ∗) are answered in a dif-
ferent way. Let Ssign be the zero-knowledge simulator ofNIZKsign. Upon query (sign, i, bsn,M, SigRL)
where (i,Mi, statei, svti, tki) ∈ Lurs and svti 6= ⊥ (namely, the sanitizer S is honest) and (bsn,M) 6=
(bsn∗,M∗) (where (bsn∗,M∗) is the i∗-th query to the random oracle H), the hybrid computes
σ = ([c]1, π), state′i ← Mi(statei, bsn,M, SigRL), retrieve the tuple (H, (bsn,M, crs, tps) from DRO

(or create it if it does not exist), computes π̃ ← S(tps, ([c]1,SigRL)) and outputs ([c]1, π̃).

Lemma 7. |Pr [H5(λ) = 1]− Pr [H4(λ) = 1] | ∈ negl(λ).

28

Proof. We reduce to the strong derivation privacy of NIZKsign. As the reduction is almost straight
forward, here we just give a sketch. Let qsign be an upper bound on the number of signing queries
sessions the adversaries perform. Due to strong derivation privacy we know that, for each query, we
have

Advder-priv
A,NIZK(λ) :=

∣∣∣Pr
[
Expder-priv

A,NIZK(1λ) = 1
]
− 1

2

∣∣∣ = ε(λ) ∈ negl(λ).

This means that |Pr [H5(λ) = 1]− Pr [H4(λ) = 1] | ≤ qsign · ε(λ) ∈ negl(λ).

Hybrid H6(λ). Let H6 be the same as H5 but where, for any signature produced by honest
platforms with a subverted machine, we control explicitly that [c]1 is of the right form. Specifically,
upon query (sign, i, bsn,M, SigRL) where (i,Mi, statei, svti, ∗) ∈ Lurs and svti 6= ⊥ (namely, the
sanitizer S is honest), the hybrid computes σ = ([c0, c1]1, π), state′i ← Mi(statei, bsn,M, SigRL),
and return ⊥ to the adversary if e([c1]1, [1]2) 6= e([c0]1, [y0]2).

Lemma 8. Pr [H6(λ) = 1] = Pr [H5(λ) = 1].

Proof. Recall that svti = [c, cy0]1, and that the proof πσ proves that (svti, [c]1) are of form
[x, xy, z, zy] for x, y, z ∈ Zp. Therefore, if the hybrid H6 outputs ⊥ but H5 does not, then the
proof πσ verifies but c does not lie in the subspace spanned by svti, therefore breaking the adaptive
perfect soundness of NIZKsvt.

Let Qsp := {[t]1 : (∗, ∗, ∗, ∗, ([t]1, σsp, [y]2)) ∈ Lusr}. Namely, the set of signatures of the
structure-preserving signature scheme computed by the challenger of the game.

Hybrid H7(λ). Let H7 be the same as H6 but where the winning condition is changed. Specifically,
consider the condition (7) defined below:

(∗, bsn∗,M∗, ∗) 6∈ Lmsg ∨ [t∗]1 6∈ Qsp.

The winning condition is changed to W7 := W6 ∧ (7).

Lemma 9. |Pr [H7(λ) = 1]− Pr [H6(λ) = 1] | ∈ negl(λ).

Proof. We need to bound the probability of the event Bad := W6 ∧ (∗, bsn∗,M∗, ∗) ∈ Lmsg ∧ [t∗]1 ∈
Qsp, We reduce to the SXDH assumption over G1. Clearly, this problem is equivalent to SXDH
(just permute the second and forth coordinates of the challenge). Consider the following reduction:

Adversary B(bgp, [1, x, y, z]1):

1. (Install the Challenge in the parameters.) Run the adversary A and simulate the
hybrid H7. Specifically, compute the public parameter as the hybrid does but using the
bgp given in input to B and setting [h]1 := [x, y]1.

2. Simulate the random oracle K by making sure that no collisions will appear.
3. Eventually the adversary outputs its forgery (bsn∗,M∗, σ∗,PrivRL∗,SigRL∗), let ([t∗]1, [σ

∗
sp]1, [y

∗]2)
be the extracted witness and [y∗]2 = [y∗0 , y

∗
1]2.

4. Let [y]2 such that (∗, ∗, ∗, ∗, ([t∗]1, ∗, [y]2)) ∈ Lusr and (∗, bsn∗,M∗, σ) ∈ Lmsg. Compute
[d0]2 := [y∗0 − y0]2 and [d1]2 := [y∗1 − y1]2 and return 1 if and only if e([z]1, [d1]2) =
−e([h0]1, [d0]2).

29

First notice that the simulation given by B is statistically close to the hybrid experiment H7. In
fact, the only difference is that in H7 there might be collisions in K, however the probability of such
event is negligible in the security parameter.

Let parse σ∗ = ([c∗]1, π
∗) and σ = ([c]1, π). When Bad happens, because of condition (3) then

[c∗1] 6= [c1] (the signature are unlinkable), also, because of (∗, bsn∗,M∗, ∗) ∈ Lmsg ∧ [t∗]1 ∈ Qsp there
must exist [y]2 and σ as defined in step 4 of B. Thus we have that y 6= y∗ and t = h · y = h · y∗.
Therefore h0d0+h1d1 = 0, thus if z = xy = h0h1 then the pairing test e([z]1, [d1]2) = −e([h0]1, [d0]2)
must hold, while if z is uniformly random in Zp then the test hold with negligible probability.

Next, we define two different classes of adversaries. Let A1 be the class of adversaries such that
the event [t∗]1 ∈ Qsp happens with noticeable probability in H7. Similarly, let A2 be the class of
adversaries such that the same event happens with negligible probability in H7. The two classes
partition the entire class of adversaries.

We now fork our hybrid argument in two. The first sequence is to argue the unforgeability for
the adversaries from the class A1.

Hybrid H8(λ). Let H8 be the same as H7 but where the winning condition is changed. Let qjoin
be a polynomial in λ that upper bounds the number of join that the adversary performs. Pick

j∗
$← [qjoin] and change the winning condition to W8 := W8 ∧ (8) where (8) is defined as described

below:

Check that (j∗, ∗, ∗, ∗, ([t∗]1, ∗, ∗)) ∈ Lusr. Namely, the witness [t∗]1 extracted from the
proof π∗ in the forged signature was signed by the issuer at the j∗-th join protocol, and the
parties Sj∗ ,Mj∗ were not (both) corrupted.

Lemma 10. For any A ∈ A1 there is a polynomial p such that Pr [H8(λ) = 1] ≥ Pr [H7(λ) = 1] /p(λ).

Proof. Let p′(λ) be a polynomial such that Pr [[t∗]1 ∈ Qsp] ≥ 1/p′(λ). By the definition of A1, this
polynomial exists. Notice that the condition (8) holds when [t∗]1 ∈ M and [t∗]1 is the message
signed by I (using SS) at the j∗-th join session. In particular these two events are independent, so
the probability that (7) holds is 1/qjoin · 1/p′(λ) which is noticeable in λ.

Hybrid H9(λ). Let H9 be the same as H8 but where the random oracle J is programmed differently.
Let NIZKcom.Initzk be the zero-knowledge common-reference string generator for NIZKcom. In
particular, when the challenger is queried with either (honest join, j∗, ∗) or with (dishonestH join,

j∗, I, ξ)23, the challenger picks a random id∗
$← {0, 1}λ (we assume that id∗ was not queried to J),

computes crs, tps ← NIZKcom.Initzk(bgp) and set the entry (J, id∗, crs, tps) in the database DRO.
Finally it outputs the message id∗ as the first message of the issuer I in the join protocol.

Lemma 11. For any A ∈ A1 |Pr [H9(λ) = 1]− Pr [H8(λ) = 1] | ∈ negl(λ).

Proof. We reduce to composable zero-knowledge property. Also notice that the probability that id∗

was queried already to J is qRO/2
λ where qRO upper bounds the number of queries made to the RO.

23 Recall that the first message of the protocol is sent by the issuer, however, in the security experiment the
sessions are started with a first message from the adversary, we handle this assuming that the adversary,
acting as the sanitizer in the join protocol, initiates the join protocol by sending an empty string ξ to I.

30

Hybrid H10(λ). Let H10 be the same as H9 but where the transcript output in the j∗-th
join protocol is different. Let Scom be the zero-knowledge simulator of NIZKcom. Upon query
(honest join, j∗,M), let τ be the transcript at the end of the execution of the join protocol, find
in τ the message ([t]1, πS), compute π̃S ← Scom(tpscom, [t]1) and set τ̃ be the same as τ but where
the message ([t]1, πS) is substituted with the message ([t]1, π̃S). Return svti, τ̃ to the adversary.

Lemma 12. For any A ∈ A1 Pr [H10(λ) = 1] = Pr [H9(λ) = 1].

Proof. The proof of the lemma follows by the strong derivation privacy of the NIZKcom. In par-
ticular, we can perform an hybrid argument over the number of execution of the join protocol with
an honest sanitizer. The reduction is straight forward therefore omitted.

Hybrid H11(λ). Let H11 be the same as H10 but where at the j∗-th join protocol, if the adversary
plays with a subverted machine and an honest sanitizer, then we substitute the subverted machine
with well behaving machine. Recall that, in the description of the join protocol the machine M
sends two messages. Consider the machine M̃ that samples a random index r

$← {1, 2, 3} and that
executes the same code of the honest machine Π.M but that, if r = 1 it does not send the first
message (or the message is invalid), if r = 2 it does not send the second message (or the message
is invalid) and if r = 3 does complete the join protocol. If the adversary sends a query of the kind
(honest join, j∗,Mi) then the hybrid executes the query with the machine M̃ instead of Mi.

Lemma 13. For any A ∈ A1 there is a polynomial p such that Pr [H11(λ) = 1] ≥ Pr [H10(λ) = 1] /3.

Proof. Let r′ be the random variable that is 1 if the machineMi does not send the first message (or
the message is invalid), 2 if it does not send the second (or the message is invalid) and r otherwise.

We prove that for any assignment l ∈ {1, 2, 3}, Pr [H10|r = l] = Pr [H9|r′ = l]. Notice that the
distribution of the transcript of the join protocol, conditioned on r′ = l, it is the same either if the
machine isMi or M̃. In fact, if l = 1 then both distribution are trivially equivalent (as no messages
was sent by Mi or M̃). If l = 2 then the first message of the transcript is ([t]1, [t]2, π̃S) where the
proof is simulated and therefore independent of the machine’s message, and t is a uniformly chosen
vector in the span of (1, y0). If l = 3 then the last message is a deterministic message (the message
completed)) moreover by the Assumption 1 the machine Mi never aborts after the protocol join
successfully completed.

Also, if H9 = 1 then the sanitizer Si is honest, therefore all the signatures are re-randomized
and for the correct key y0. Specifically, let ([c]1, π) be a signature output by the challenger on query
(sign, j∗,M, SigRL), the vector [c]1 is a function of K and y0 (we used the soundness of the proof
πσ sent by the machine to the Si to state this in H6), so independent of the machine’s messages,
moreover, by the change introduced in the hybrid H5 we simulate the proof π, which is therefore
independent of the machine’s messages.

With the following derivation we can conclude the proof of the lemma:

1
3 Pr [H10] = 1

3

3∑
l=1

Pr [H10|r′ = l] Pr [r′ = l] = 1
3

3∑
l=1

Pr [H11|r = l] Pr [r′ = l]

≤ 1
3

3∑
l=1

Pr [H11|r = l] = Pr [H11] .

31

Hybrid H12(λ). Let H12 be the same as H11 but where the values πσ are computed differently in
the j∗-th platform. Let Ssvt be the zero-knowledge simulator ofNIZKsvt and letNIZKsvt.Init be the
zero-knowledge common-reference string generator. At initialization time, the hybrid H12 computes
crssvt, tpsvt ← NIZKsvt.Init(bgp), and, whenever the adversary queries (sign, j∗,M, SigRL) when
(j∗, ∗, ∗,⊥, ∗) ∈ Lusr (namely the sanitizer is corrupt but the platform is honest), the signature is
computed as before but the proof πσ is computed as πσ ← Ssvt(tpsvt, [svti]1, [c]1).

Lemma 14. For any A ∈ A1 |Pr [H12(λ) = 1]− Pr [H11(λ) = 1] | ∈ negl(λ).

Proof. The lemma follows easily by the composable zero-knowledge property of NIZKcom.

We can now show that the winning probability in H12 is negligible.

Lemma 15. Pr [H12(λ) = 1] ∈ negl(λ).

Proof. We reduce to the SXDH Assumption. There are two possible cases for the adversary: either
the adversary sends to the challenger the message (honest join, j∗,Mi) or it sends (dishonestH join, j∗, I, ξ).
In the following we show a reduction for the first case. A similar reduction can be given for the
second case, thus we omit here the details.

Consider the following reduction:

Adversary B(bgp, [1, x, y, z]1):
1. Run the adversary A and simulate the hybrid H11. Specifically, compute the public

parameter as the hybrid does but using the bgp given in input to B.
2. (Install the Challenge - part 1.) Run the setup algorithm Setup but set [h]1 =

[αx, x]1 where α
$← Zp.

3. (Install the Challenge - part 2.) Eventually, the adversary sends the query (honest join,
j∗,Mi)). By the change introduced in H10, the adversary B simulates an execution of
the join protocol using the machine M̃. In particular, it computes [t∗]1 := [h1 ·y0]1+[z]1.
Recall that by the change introduced in the hybrid H9 the proof πS is computed using
the simulator, thus without the need of the witness (y0, y).

4. At every signature query (sign, j∗, bsn,M, SigRL) if (bsn,M) 6= (bsn∗,M∗) then both
the signature σ = ([c]1, π) and the proof πσ can be computed using the respective
simulator. Else if (bsn,M) = (bsn∗,M∗) then stop the simulation and return a random
bit.

5. Eventually the adversary outputs is forgery (bsn∗,M∗, σ∗,PrivRL∗,SigRL∗), let ([t∗]1, [σ
∗
sp]1,

[y∗]2) be the extracted witness and [y∗]2 = [y∗0 , y
∗
1]2.

If W11 (namely, the winning condition of H11) does not hold outputs a random bit. Else
output 1 if and only if e([y]1, [1]2) = e([1]1, [αy

∗
0 + y∗1 − αy0]2).

First we notice that if the reduction outputs a random bit (because of step 4 or step 5) then the
winning condition does not hold. In particular, in step 4 the reduction outputs a random bit if
(bsn,M) = (bsn∗,M∗), so a tuple (∗, bsn∗,M∗, ∗) would appear in Lmsg and therefore, if [t∗] ∈ Qsp
then condition (7) would not be met.

Secondly, we notice that the distribution of [tM]1, [tM]2, πM is equivalent to the one in H12,
thus B perfectly simulates H12. Also notice that if H11 = 1 then the extracted value [y∗]2 is such
that [hT · y∗]t = [t∗]t. Suppose z = xy, then rewriting the equation we have:

αxy∗0 + xy∗1 = xαy0 + xy

32

By simplification, the equation above implies that y = αy∗0 + y∗1 − αy0, thus the reduction B will
always output 1. On the other hand, if z is uniformly random, the reduction B will output 0 (with
overwhelming probability).

By the triangular inequalities and by putting together all the lemmas above, we have now showed
that adversaries from the class A1 can win the unforgeability game only with negligible probability.
Thus, we need to show the same statement for the adversary from the class A2. We roll back to
hybrid H7. We can now show that the winning probability in H7 is negligible.

Lemma 16. For any adversary A ∈ A2 we have Pr [H7(λ) = 1] ∈ negl(λ).

Proof. We reduce to the unforgeability of structure preserving signature SS. Consider the following
adversary B against the existential unforgeability against chosen-message attacks of SS:

Adversary B(pksp) with oracle access to Osign(sksp, ·)

1. Simulate the hybrid H6, in particular use pksp to define the public material in the Setup.
2. Simulate the join protocol using the oracle access to Osign, in particular whenever the

hybrid executes the party I in a join protocol and receives the message ([t]1, [t]2, πS)
query a signature for the message [t]1, then proceed as the hybrid does.

3. When the adversary outputs its forgery, compute ([t∗]1, [σ
∗
sp]1, [c

∗]1) as the hybrid does,
and output [t∗]1, [σ

∗
sp]1.

By the definition of H7 = 1 we have that [t∗]1 6∈ {[t]1 : (i, ∗, ∗, ∗, ([t]1, ∗, ∗)) ∈ Lcorr}. Also by
the definition of A being in A2 we have that [t∗]1 6∈ {[t]1 : (i, ∗, ∗, ∗, ([t]1, ∗, ∗)) ∈ Lusr} (with
overwhelming probability). Therefore, the adversary B has not queried [t∗]1 to its signature oracle.
Moreover, by the definition of H7 = 1 the signature verifies, thus this is a valid forgery for SS.

Theorem 2. If NIZKsign and NIZKcom are strongly derivation private, adaptively extractable
sound and adaptively composable perfect zero-knowledge, both the XDH assumption in G1 holds and
the Assumption 1 holds, and NIZKsvt is adaptively sound, then the SR-EPID described above is
anonymous in the ROM.

We first give a sketch of the proof. First we notice that adaptive corruption and selective
corruption for anonymity are equivalent up to a polynomial degradation of the advantage of the
adversary. In particular, we can assume that the adversary corrupts all the platforms but the i1-th
and the i2-th platforms used for the challenge of security game.

The idea of the reduction is to switch to zero-knowledge the common reference strings used
in the join protocols for the platforms i1 and i2 by programming the random oracle. Similarly,
switch to zero-knowledge and simulate all the signatures output by the two platforms (again by
programming the random oracle). Thus using the strong derivation privacy property of NIZKsign

and NIZKcom to make sure that no information about the platform keys is exfiltrated. Notice that
at this point the machines cannot communicate any information using biased randomness, on the
other hand, they could still communicate using valid/invalid signatures. Although, the definition of
anonymity disallows telling apart i1 from i2 using this channel, for technical reasons, in the last step
of the proof (when we reduce to XDH) we need to completely disconnect the subverted machines
and, again, substitute them with well-behaving machines, thus here we need to rely on Assumption
1.

33

At this point the element y
(1)
0 (resp. y

(2)
0) of the key y(1) of the platform i1 (resp. key y(2) of

the platform i2) are almost hidden to the view of the adversary. However, the challenge signature

σ = ([c∗]1, π) still contains the value [c∗1]1 = K(bsn∗) ·y(b)0 . The last step of the proof of anonymity is
to change the way the challenge signature is computed. In particular, the value above is computed
as K(bsn∗) · x for a uniformly sampled x. This step is proved indistinguishable using the XDH
assumption on G1.

Proof. Recall the security experiment in Fig 1. The experiment postulates adaptive corruption of
the platforms, namely, the query (corrupt, ∗) can be function of the view of the adversary. It
is not hard to see that for any PPT adversary that adaptive corrupts the platforms there exists
another adversary that commits to its corruptions at the very beginning of the experiment, and,
in particular, independently of all the public parameters. More in details, given an adversary A
which performs at most q different join protocols, let A′ be the adversary that (1) first samples two

indexes i∗1, i
∗
2

$← [q], then corrupts all the platforms expect that i∗1-th and the i∗2-th, and (2) runs
the same as A but aborts and returns a random bit if the indexes chosen by A in the challenge are
not i∗1, i

∗
2.

Clearly, for any b ∈ {0, 1} we have:

Pr
[
Expanon

A′,Π(λ, b) = b
]

= 1
q2 Pr

[
Expanon

A,Π(λ, b) = b
]

+ (1− 1
q2)/2

In the following, we therefore consider adversaries that non-adaptively corrupts the platforms. We
give a sequence of hybrid experiments, where H0(λ, b) := Expanon

A′,Π(λ, b). Moreover, we can assume
that the machines Mi1 and Mi2 do not abort during the join protocol. In fact, if this happened
then the challenge signature would be ⊥ so the adversary can guess the challenge almost with
probability 1

2 .

Hybrid H1(λ, b). Let H1 be the same as H0 but where the random oracle J is programmed to
output random common-reference strings in zero-knowledge mode. In particular, the hybrid H1

keeps track of all the random oracle query to J recording them in a database DRO, exactly in the
same way as the extractor E of the proof of Thm. 1.

Lemma 17. For b ∈ {0, 1}, |Pr [H1(λ, b) = b]− Pr [H0(λ, b) = b] | ∈ negl(λ).

The proof of the lemma follows similarly to the proof of Lemma 1 and therefore it is omitted.

Hybrid H2(λ, b). Let H2 be the same as H1 but where the transcripts output in the i1-th and
i2-th join protocol are different. Let Scom be the zero-knowledge simulator of NIZKcom and let
tp(i1), tp(i2) be the trapdoor information relative the values id(i1) and id(i2) as recorded in the
database DRO. (Notice, because all the CRS are simulated such trapdoors always exist.) Upon query
(join, i, (id(i))) and i ∈ {i1, i2} (namely, the first message in the join protocol sent by the adversary

acting as the issuer) compute ([t
(i)
M]1, π

(i)
M), state′i ←Mi(statei, id

(i)), performs the same verification
that S does and if the checks hold compute [t(i)]1 as S does and π̃(i) ← Scom(tp(i), [t(i)]1). Return
([t(i)]1, π̃

(i)).

Lemma 18. For b ∈ {0, 1}, |Pr [H2(λ, b) = b]− Pr [H1(λ, b) = b] | ∈ negl(λ).

The proof of the lemma follows similarly to the proof of Lemma 11 and therefore it is omitted.

34

Hybrid H3(λ, b). Let H3 be the same as H2 but with a new condition on signature queries.
Specifically, upon oracle query (sign, i,M, bsn,SigRL) and i ∈ {i1, i2} if ∃(Mj , bsnj , σj) ∈ SigRL

such that σj = ([cj]1, πj) and (−y(i)0 , 1) · [cj]1 = [0]1 then output directly ⊥.

Lemma 19. For b ∈ {0, 1}, Pr [H3(λ, b) = b] = Pr [H2(λ, b) = b].

Proof. Recall the relation Rsign in Eq. (1) states that for any tuple (Mj , bsnj , ([cj], πj)) in SigRL we

have that (−y(i)0 , 1) · [cj]1 = [0]1 (namely, cj is not in the span of (1, y
(i)
0)). Therefore, by correctness

of the NIZK scheme, if the event checked by the hybrid happens then the honest prover would not
be able to produce a valid proof because the instance is not in the language.

Hybrid H4(λ). Let H4 be the same as H3 but where we program differently the random oracle

H. In particular, upon a query (RO,H, x) the hybrid samples crs, tps
$← NIZKsign.Initzk(bgp) and

sets the tuple (H, x, crs, tps) into the database DRO.

Lemma 20. |Pr [H4(λ) = 1]− Pr [H3(λ) = 1] | ∈ negl(λ).

Proof. The proof of the lemma follows by property (i) of Def. 5 (adaptive composable perfect
zero-knowledge) of NIZKsign.

Hybrid H5(λ, b). Let H5 be the same as H4 but where the signatures for the platforms i1 and
i2 are computed differently. In particular, the hybrid H5 upon query (sign, i,M, bsn,SigRL) where

i ∈ {i1, i2} (resp. the challenge (M∗, bsn∗, i1, i2,SigRL)) computes π
$← Ssign(tps, [c]) (resp. computes

π∗
$← Ssign(tps, [c∗])).

Lemma 21. For b ∈ {0, 1}, Pr [H5(λ, b) = b] = Pr [H4(λ, b) = b].

Proof. The additional check introduced in the hybrid experiment H3 guarantees that if the instance
[c]1,SigRL is not in the language of the NIZK NIZKsign then the challenger answers the query with
⊥. Thus the simulated proofs are generated only for instances in the language. Moreover, by the
Assumption 1 the (possibly subverted) machines Mi1 and Mi2 always produce a signature (when
the correctness property of the EPID is verified). The lemma follows by the perfect composable
zero-knowledge property of NIZKsign.

Hybrid H6(λ, b). Let H6 be the same as H5 but where t(i)
$← Zp for i ∈ {i1, i2}. (The hybrid H5

samples the value y0 when simulating the honest sanitizer Si∗ .)

Lemma 22. For b ∈ {0, 1}, Pr [H6(λ, b) = b] = Pr [H5(λ, b) = b].

Proof. For i ∈ {i1, i2} the distribution t(i)
$← Zp and t

(i)
M + h1yS where yS

$← Zp are equivalent.
Moreover, conditioning on a specific value for t(i) the view of the adversary is independent of yS
because the NIZK proofs from S to I are simulated.

Hybrid H7(λ). Let H7 be the same as H6 but where, for any signature produced by the plat-
forms i1 and i2 we additionally control that [c]1 is of the right form. Specifically, upon query
(sign, i,M,SigRL) where and i ∈ {i1, i2}, the hybrid computes σ = ([c0, c1]1, π), state′i ←Mi(statei,M),
and return ⊥ to the adversary if e([c1]1, [1]2) 6= e([c0]1, [y0]2).

Lemma 23. For b ∈ {0, 1}, Pr [H7(λ, b) = b] = Pr [H6(λ, b) = b].

The proof of the lemma follows identically to the proof of Lemma 8, therefore the proof is omitted.

35

Hybrid H8(λ, b). Let H8 be the same as H7 but where the challenge signature is computed

differently. Specifically, a fresh z
$← Zp is sampled and [c∗]1 ← [c∗0, z · c0]1 where [c∗0] = K(bsn∗).

Lemma 24. For b ∈ {0, 1}, |Pr [H8(λ, b) = b]− Pr [H7(λ, b) = b] | ∈ negl(λ).

Proof. We give a reduction to the SXDH problem in G1. We assume that A does not query more
than once the random oracles on the same point, also we assume that A queries the challenge
basename bsn∗ before outputting its challenge. Both the assumptions are without loss of generality.
Consider the following adversary B:

Adversary B([1, x, y, z]1):

1. Let q be an upper bound of the number of queries to K made by A, let j∗
$← [q].

2. Simulate the experiment H8(λ, b) and the random oracles H,K,J , in particular, simu-
late the random oracle K by maintaining a list DRO initially empty. At the j-th query
to K, if j = j∗ then add the tuple (bsn′, 1, [x]1) and reply with [x]1 else add the entry

(bsn′, 0, α) where α
$← Zp and return [α]1.

3. Upon query (sign, ib,M, bsn,SigRL), if the tuple (bsn, 1, ∗) ∈ DRO stop the simulation
and return a random bit, else retrieve (or create) the tuple (bsn, 0, α) fromDRO. If it exists
(Mj , bsnj , σj = ([cj,0, cj,1]1, πj)) in SigRL such that (bsn, 0, α′) ∈ DRO and [cj,1] = α′[y]1
output directly ⊥ (simulating the check introduced in H4). Compute the signature by
setting [c] ← α · [1, y]1 and compute π using the simulator of NIZKsign (according to
the change introduced in H8).

4. Let (M∗, bsn∗, i0, i1,SigRL) be the output of A as in step 3 of Fig. 1. Retrieve the tuple
(bsn∗, α) from the list DRO (or create it if it does not exist). Compute the signature by
setting [c∗]← ·[x, z]1 and computing π using the simulator of NIZKsign (according to
the change introduced in H8).

5. Continue simulating the experiment H8 and output what A outputs.

First we notice that given the transcript of the join protocol for the platform ib the value y
(ib)
0

is uniformly distributed. In particular, the distribution of [y]1 and [y
(ib)
0]1 are the same, so the

signatures for ib produced by B are distributed equivalently to the signatures in H7 (and H8).
Secondly notice that, if z = xy then the distribution of the challenge signature is exactly as in H7,
while if z is uniformly random then the distribution is exactly as in H8. This concludes the proof.

Lemma 25. For any b ∈ {0, 1}, Pr [H8(λ, b) = 0] = 1/2

Proof. Let us analyze the view of the adversary in the hybrid H8. Notice that the adversary cannot
get any extra information about the bit b using the signature oracle and different SigRL, because
the definition of anonymity implies that if one of the two platform (i1 or i2) would output ⊥ then
the output of the oracle is ⊥. Also, notice that for both the challenge signature is made with a
value y0 that is uncorrelated to both the transcript of the join protocol and the signatures released
by the two platform. Therefore the full view of the adversary is independent of the bit b, thus the
winning probability.

Theorem 3. If NIZKsign and NIZKcom are strongly derivation private, adaptively extractable
sound and adaptively composable perfect zero-knowledge, both the XDH assumption in G1 holds and
the Assumption 1 holds, and NIZKsvt is adaptively sound, then our SR-EPID is non-frameable in
the ROM.

36

Similarly to anonymity, adaptive corruption and selective corruption for non-frameability are
equivalent up to a polynomial degradation of the advantage of the adversary. So we can assume that
the challenger knows the honest platform that will be attacked by the adversary, let such platform
be the i∗-th platform. Again, similarly to the proof of anonymity and the proof of unforgeability of
our scheme, we switch, thanks to the strong derivation privacy of the NIZK schemes, to an hybrid
experiment where all the messages, both during the join protocol and the signature queries, are
simulated by challenger and where, moreover, the signature forged by the adversary is extractable.
Also, similarly to the proof of unforgeability, thanks to Assumption 1, we substitute the machine
of the i∗-th platform with a well-behaving machine.

At this point we can reduce the security to the computational problem of finding [x]2 given
[x]1, which directly implies the XDH assumption in G1. The idea of the reduction is that, given
the challenge [x]1 we can (implicitly) install the element x as the first element of the platform key
of the i∗-th platform. Notice that given [x]1, by programming the random oracle and thanks to
the simulation trapdoors, we can faithfully run this hybrid-version of the non-frameability game.
Moreover, we do not need to explicitly communicate the platform key to the machine of the i∗-th
platform because we substituted it with a well-behaving one. Once the adversary output its forgery,
we can use the extraction trapdoor to extract the witness from the signature. A successful adversary
forges a signature ([c∗], π∗) that links to another signature ([c]1, π) produced by the i∗-th platform,
recall that the linking procedure, given the two signatures on the same basename bsn∗, checks that
[c∗]1 = [c]1 and verifies the signatures, thus we have [c∗1] = K(bsn) · x and the reduction must have
extracted the value [x]2 from proof π∗ of the forged signature.

Proof. Recall the security experiment in Fig 3. The experiment postulates adaptive corruption
of the platforms, namely, the query (corrupt, ∗) can be function of the view of the adversary.
As for anonymity, it is not hard to see that for any PPT adversary that adaptive corrupts the
platforms there exists another adversary that commits to its corruptions at the very beginning of
the experiment, and, in particular, independently of all the public parameters. More in details,
given an adversary A which performs at most q different join protocols, let A′ be the adversary

that (1) first samples an index i′
$← [q], then corrupts all the platforms expect that i′-th, and (2)

runs the same as A but aborts if the index i∗ chosen by A in the forgery is not equal to i′.
Clearly, for any b ∈ {0, 1} we have:

Pr
[
Expnon-frame

A′,Π (λ) = 1
]

= 1
q Pr

[
Expnon-frame

A,Π (λ) = 1
]

In the following, we therefore consider adversaries that non-adaptively corrupts the platforms. We
give a sequence of hybrid experiments, where H0(λ) := Expnon-frame

A′,Π (λ). Moreover, we can assume
that the machines Mi∗ does not abort during the join protocol. In fact, if this happened then the
winning condition (3) would not be satisfied.

The first step of the hybrid argument proceed exactly the same as in the hybrid step H2 and
H3 of the proof of Theorem 1. In the next hybrid we summarize the change. As in the proof
of Theorem 1, we call Wi the winning condition in the hybrid experiment Hi, we set W1 :=
(1) ∧ (2) ∧ (3) ∧ (4) and, whenever we don’t mention it explicitly, we set Wi+1 := Wi.

Hybrid H1(λ). Let H1 be the same as H0 but where the winning condition is changed and random

oracle H is programmed. In particular, the hybrid samples an index j∗
$← [qH] where qH is an upper

bound on the number of oracle queries made by A to H, and upon the j-th query (RO,H, x) to the

37

random oracle (w.l.g. we assume the adversary does not query twice the RO with the same input)

if j = j∗ then the hybrid samples crs, tpe
$← Initsnd(bgp) and sets the tuple (H, x, crs, tpe) in DRO,

else it samples crs, tps
$← Initzk(bgp) and sets the tuple (H, x, crs, tps) in DRO.

Moreover, the new winning condition is set to be W2 := W1 ∧ (5), where (5) is defined as:

(bsn∗,M∗) (the basename-message tuple of the forgery) is queried to the random oracle H
at the j∗-th query.

Lemma 26. Pr [H1(λ) = 1] ≥ Pr [H0(λ) = 1] /qH − negl(λ).

The proof of the lemma follows similarly to the proof of Lemmas 4 and 6, therefore it is omitted.
The second step of the hybrid argument proceed similar to the proof of Theorem 2. In particular,

we apply the same modifications as in the hybrids H1, H2 and H3 of Theorem 2. We summarize
in the next hybrid the changes.

Hybrid H2(λ). Let H1 be the same as H0 but where:

1. The random oracle J is programmed to output random common-reference strings in zero-
knowledge mode.

2. Let Scom be the zero-knowledge simulator of NIZKcom and let tpi∗ be the trapdoor information
relative the value idi∗ as recorded in the database DRO. Upon query (join, i∗, (id)) (namely, the

first message in the join protocol sent by the adversary acting as the issuer) pick t(i
∗) $← Zp

and π̃(i∗) ← Scom(tpi∗ , [t
(i∗)]1), and send ([t(i

∗)]1, π̃
(i∗)).

3. Upon oracle query (sign, i∗,M, bsn,SigRL) if ∃(Mj , bsnj , σj) ∈ SigRL such that σj = ([c]1, π)

and (−y(i
∗)

0 , 1) · [c]1 = [0]1 then output directly ⊥.
4. Upon oracle query (sign, i∗,M, bsn,SigRL) let σ = ([c0, c1]1, π), πσ be the output of Mi, if

[c0y
(i)
0]1 6= [c1] then output directly ⊥.

Lemma 27. |Pr [H2(λ) = 1]− Pr [H1(λ) = 1] | ∈ negl(λ).

The proof of the lemma follows very similar to the conjunction of Lemmas 8,17,18,20 and 19
therefore it is omitted.

Hybrid H3(λ). Let H3 be the same as H2 but where the signatures are computed differently.
Specifically, upon oracle query (sign, i∗, bsn,M, SigRL) the hybrid experiment H3 computes [c]1 :=

(K(bsn),K(bsn)y
(i∗)
0), retrieve the tuple (H, (bsn,M), crs, tps) fromDRO and computes π

$← Ssign(tps, [c])

(resp. computes π∗
$← Ssign(tps, [c∗])).

Lemma 28. Pr [H3(λ) = 1] = Pr [H2(λ) = 1].

Proof. The additional check introduced in the hybrid experiment H2 guarantees that if the instance
[c]1,SigRL is not in the language of the NIZK NIZKsign then the challenger answers the query with
⊥. Thus the simulated proofs are generated only for instances in the language. Also by the winning
conditions, the adversary would never query a signature for bsn∗,M∗, so the retrieved trapdoors tps
allow for zero-knowledge. The lemma follows by the adaptive composable perfect zero-knowledge
property (Def. 5) of NIZKsign.

38

Lemma 29. Pr [H3(λ) = 1] ∈ negl(λ).

Proof. We reduce to the SXDH Assumption in G1. Consider the following adversary B:

Adversary B([1, x, y, z]1):

1. Simulate the experiment H3(λ, b) and the random oracles H,K, J, in particular, simulate
the random oracle K by maintaining a list DRO initially empty and whenever A sends

the query bsn′ if (K, bsn′, ∗) 6∈ DRO then add the entry (K, bsn′, α) where α
$← Zp and

return [α]1.
2. Upon query (sign, i∗, bsn,M, SigRL) Retrieve the tuple (K, bsn, α) from the list DRO (or

create it if it does not exist). Compute the signature by setting [c] ← ·[α, αx]1 and
computing π using the simulator of NIZKsign (according to the change introduced in
H6).

3. Let (M∗, bsn∗, σ∗) be forgery of A. Retrieve the tuple (K, bsn∗, α) from the list DRO. If
the winning condition W3 holds, parse σ∗ = ([c]∗, π∗), extract the proof π, computing
([t]1, [σsp]1, [y0, y1]2)← E(tpe, π) and output 1 if and only if e([y]1, [y0]2) = e([z]1, [1]2).

First we notice that, similarly to the proof of Thm 2, given the transcript of the join protocol for the

platform i∗ the value y
(i∗)
0 is uniformly distributed. In particular, the distribution of [x]1 and [y

(i∗)
0]1

are the same, so the signatures for i∗ produced by B are distributed equivalently to the signatures
in H3. Notice that by the winning condition W3 we have that (bsn∗,M∗) is queried at the j∗-th
oracle query, so we can use the trapdoor tpe and by adaptive knowledge-soundness of NIZKsign the
proof π∗ can be extracted and for the extracted value [y0]2 it holds that [c2]1 = [y0 ·c]1. Because the
signature σ∗ links to a signature produced by the platform i∗ it must be the case that y0 = x, thus,
when z = xy the equation e([y]1, [y0]2) = e([z]1, [1]2) will always hold, while when z is uniformly
random the equation will be false (with overwhelming probability). This concludes the proof.

Acknowledgements

Research leading to these results has been partially supported by the Spanish Government under
projects SCUM (ref. RTI2018-102043-B-I00), CRYPTOEPIC (ref. EUR2019-103816), and SECURI-
TAS (ref. RED2018-102321-T), and by the Madrid Regional Government under project BLOQUES
(ref. S2018/TCS-4339). The first author was partially supported by the before mentioned projects
when he was a postdoctoral fellow at IMDEA Software Institute where he performed the research
leading to this paper.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and
commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236.
Springer, Heidelberg (Aug 2010). doi:10.1007/978-3-642-14623-7 12

2. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In: Ray, I., Li, N., Kruegel:,
C. (eds.) ACM CCS 15. pp. 364–375. ACM Press (Oct 2015). doi:10.1145/2810103.2813635

3. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: Security in the face of param-
eter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp.
777–804. Springer, Heidelberg (Dec 2016). doi:10.1007/978-3-662-53890-6 26

39

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1145/2810103.2813635
https://doi.org/10.1007/978-3-662-53890-6_26

4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, sim-
plified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (May 2003). doi:10.1007/3-540-
39200-9 38

5. Bellare, M., Sandhu, R.: The security of practical two-party RSA signature schemes. Cryptology ePrint
Archive, Report 2001/060 (2001), http://eprint.iacr.org/2001/060

6. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N.P., Warinschi, B.: Anonymous attestation with
user-controlled linkability. Int. J. Inf. Secur. 12(3) (Jun 2013)

7. Brickell, E., Li, J.: Enhanced privacy ID: A direct anonymous attestation scheme with enhanced revo-
cation capabilities. IEEE Trans. Dependable Sec. Comput. 9(3)

8. Brickell, E., Li, J.: Enhanced privacy id: a direct anonymous attestation scheme with enhanced revo-
cation capabilities. In: ACM WPES (2007)

9. Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R.: One TPM to bind them all:
Fixing TPM 2.0 for provably secure anonymous attestation. In: 2017 IEEE S&P). pp. 901–920 (2017)

10. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation with subverted TPMs. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 427–461. Springer, Heidelberg (Aug
2017). doi:10.1007/978-3-319-63697-9 15

11. Camenisch, J., Lehmann, A.: (Un)linkable pseudonyms for governmental databases. In: Ray, I., Li, N.,
Kruegel:, C. (eds.) ACM CCS 15. pp. 1467–1479. ACM Press (Oct 2015). doi:10.1145/2810103.2813658

12. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private: Constructions and ap-
plications to (homomorphic) signatures with shorter public keys. In: Gennaro, R., Robshaw, M.J.B.
(eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (Aug 2015).
doi:10.1007/978-3-662-48000-7 13

13. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer,
Heidelberg (Apr 2012). doi:10.1007/978-3-642-29011-4 18

14. Chatterjee, S., Menezes, A.: Type 2 structure-preserving signature schemes revisited. In: Iwata, T.,
Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 286–310. Springer, Heidelberg
(Nov / Dec 2015). doi:10.1007/978-3-662-48797-6 13

15. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman
assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147.
Springer, Heidelberg (Aug 2013). doi:10.1007/978-3-642-40084-1 8

16. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the Fiat-Shamir trans-
form. In: Galbraith, S.D., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer,
Heidelberg (Dec 2012). doi:10.1007/978-3-642-34931-7 5

17. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathemat-
ics 156(16) (2008)

18. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (Apr 2008). doi:10.1007/978-
3-540-78967-3 24

19. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg (Aug 2008). doi:10.1007/978-3-540-
85174-5 2

20. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability: Simulation-sound quasi-
adaptive NIZK proofs and CCA2-secure encryption from homomorphic signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (May 2014).
doi:10.1007/978-3-642-55220-5 29

21. Mavroudis, V., Cerulli, A., Svenda, P., Cvrcek, D., Klinec, D., Danezis, G.: A touch of evil: High-
assurance cryptographic hardware from untrusted components. In: ACM CCS. pp. 1583–1600 (2017)

22. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 657–686. Springer, Heidelberg (Apr 2015).
doi:10.1007/978-3-662-46803-6 22

40

https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/3-540-39200-9_38
http://eprint.iacr.org/2001/060
https://doi.org/10.1007/978-3-319-63697-9_15
https://doi.org/10.1145/2810103.2813658
https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-662-48797-6_13
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-642-55220-5_29
https://doi.org/10.1007/978-3-662-46803-6_22

	Subversion-Resilient Enhanced Privacy ID
	Introduction
	Our Contribution
	Related work

	Subversion-Resilient Enhanced Privacy ID
	Subversion-Resilient EPID
	Syntax of Subversion-Resilient EPID (SR-EPID)
	Subversion-resilient Security

	Building Blocks
	Bilinear groups
	Structure-Preserving Signatures
	Non-Interactive Zero-Knowledge Proof of Knowledge

	Our SR-EPID Construction
	Efficiency
	Proof of Security

