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Abstract— The large number of potential applications for
robotic odor source localization has motivated the development
of a variety of plume tracking algorithms, the majority of which
work in restricted two-dimensional scenarios. In this paper, we
introduce a distributed algorithm for 3-D plume tracking using
a system of ground and aerial robots in formation. We propose
an algorithm that takes advantage of spatially distributed
measurements to track the plume in 3-D and lead the robots to
the source by integrating three behaviors – upwind movement,
plume centering, and Laplacian feedback formation control. We
evaluate this strategy in simulation and with real robots in a
wind tunnel. For a source close to the ground, results show that
a team of robots running our algorithm reaches the source with
low lateral error while also tracing the horizontal and vertical
plume shape.

I. INTRODUCTION

With the advances in robotics, embedded systems, and
chemical sensor research in the last two decades, odor sniffing
robots and sensor nodes have grown into a very active research
field in which searching for odor sources, mapping odor
distribution, and discriminating among chemical substances
are some of the most popular topics. A number of interesting
applications concerned with airborne and waterborne plumes
can be found in the security, safety, military, and medical
domains, with canonical examples including the detection
of oil spills or wild fires, the localization of landmines in
humanitarian demining operations, and the identification of
dangerous leaks inside tunnels, mines, or production plants.

The focus of the present study is odor source localization,
that is, finding the source of a chemical release using a set
of sensing nodes. Chemical release substances can range
from molecules (e.g., O3, CO2, NOx, SO2) to droplets (e.g.,
water vapor) or particles (e.g., fine particles found in smoke).
The odor is released by a source and mainly transported by
the airflow, forming a three-dimensional odor plume. As the
plume travels away from the source, it becomes more diluted
due to molecular diffusion and turbulence that mixes the odor
molecules with clean air [1].
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Molecular diffusion is a slow process whose short-term
effect on the plume shape and the odor concentration can be
neglected; thus, in outdoor or ventilated indoor environments,
the dispersion of odor molecules is dominated by flow
turbulence. The odor molecules move downwind due to mean
flow velocity U while their net motion is almost random
because of small-scale turbulence curls. This causes the
smooth odor gradient to break into patches. As the odor is
carried downwind, the average concentration within a patch
decreases while the average time between successive patches
increases.

The odor source localization problem can be divided into
three sub-problems or phases [2], although these actions might
not be necessarily performed consecutively: (i) odor plume
finding [3], (ii) odor plume tracking [4], and (iii) odor source
declaration [5]. This paper targets the odor plume tracking
problem, considering an airborne plume generated by a single
source and transported by the wind. The underlying formation
framework can, however, be used in all three phases.

Odor plume tracking has been the focus of many studies
in mobile robotics. Gradient ascent [6], bio-inspired [7],
probabilistic inference [8], [9], and map-based [10] methods
are the main families of solutions, mostly implemented
on single-robot systems. Leveraging multiple robots for
distributed search has its own peculiarities, many of
which have been explored during the last decade. Multi-
robot search algorithms proposed in the literature include
biasing expansion swarm approaches [11], biased random
walk [12], particle swarm optimization [13], gradient climbing
techniques [14], infotaxis [15], probabilistic reasoning [16],
search through exploration [17], physics-based swarming [18],
attraction-repulsion swarming [19], and formation-based
algorithms [20], [21].

Although the nature of the odor plumes and of the
underlying turbulence phenomena is intrinsically 3-D, in all
of these works the problem was reduced to 2-D search under
highly simplified environmental conditions. There are but
a few previous works studying olfactory problems in 3-D,
most relying exclusively on simulations. Kuroki et al. [22]
presented an expert system for contaminant mapping based on
a genetic algorithm for simulated Unmanned Aerial Vehicles
(UAVs) and considering the Gaussian plume/puff model
for odor distribution. In a simple simulation environment,
Kovacina et al. [23] presented a decentralized swarming
algorithm for mapping a chemical cloud. This method
considers the restrictions on sensors, computation, and
flight envelope that affect aerial robots. Bamberger et



al. [24] proposed a stigmergic potential field approach for
coordination between UAVs. Their experiments featured
simulated sensors and plumes. Wu et al. [25] developed
a stochastic model for plume spikes based on a Poisson
counting process, transforming odor measurements into a
smooth field that supports a simpler source-seeking behavior.

In a non-aerial 3-D setting, Osório et al. [26] deployed
multiple gas sensors vertically on a single wheeled
mobile robot to perform 3-D plume tracking using various
well-known algorithms (surge-caste, casting, and gradient
following). They found that plume tracking with three-
dimensional acquisition outperformed a two-dimensional
solution by 25% in terms of success rate. A similar setup
was used in [27] to enable a map-based approach. Badia et
al. [28] used a single blimp equipped with gas sensors for a
mine clearance task including chemical mapping. Neumann et
al. [29] tackled the odor distribution mapping problem using a
single microdrone and tested their odor mapping methodology
outdoors and in a wind tunnel. The same author with different
colleagues also proposed a source localization approach [30].
Ishida et al. [31] used a handheld probe comprising a 3-D
anemometer and six odor sensors to guide a human to a
gas source by combining the wind direction and the instant
odor gradient. We are unaware of any work in this area that
addressed the problem of odor source localization with a
distributed and heterogeneous 3-D sensing system.

To state the problem, consider a heterogeneous group of
N mobile sensing nodes positioned in R3. The question we
address is how to efficiently track a detected odor plume
to its source. The sensing nodes have different mobility
constraints, depending on whether they are ground or aerial
vehicles, and are equipped with sensors that measure both
odor concentration and airflow direction. Given the scales, we
assume each node is able to communicate with every other
node and has line-of-sight relative localization capabilities.
No central base station exists and therefore the nodes must
act autonomously.

The main contribution of the present study is to depart
from the classical 2-D spatial approach and add the third
dimension using a distributed robotic system comprising
ground and aerial robots. This makes it possible to localize
odor sources that are not on the ground plane, provided that
the plume is detectable by some of the vehicles. Furthermore,
we believe that migrating from conventional ground robots to
a distributed system capable of accessing various locations in
3-D space will lead to novel results in odor plume tracking,
especially considering that odor distribution is an inherently
3-D phenomenon.

We approach the problem by adapting our previously
proposed graph-based Laplacian formation method [20], [32],
[33] to a 3-D system consisting of ground and aerial robots.
The 2-D version of our method works on two basic principles:
i) under stable wind conditions, the wind direction provides
a strong hint as to the relative position of the source; and
ii) having multiple robots distributed in the environment
provides us with enough data to allow a computationally
simple algorithm to track a plume in spite of its patchiness.

Starting from these principles, we implement a method
based on three components: formation control, upwind
movement, and plume centering. A Laplacian feedback
controller allows us to organize the robots in an arbitrary
formation that may change over time to better adapt to the
plume. Wind direction and odor concentration sensors on each
robot allow us to bias the base movement in the incoming
wind direction and to center the entire formation within the
plume based on the differential readings of robots in different
points of the formation.

We have shown our 2-D algorithm to be efficient in tracking
a plume both in simulation and using Khepera IV robots in a
wind tunnel with reproducible laminar flow conditions [20].
The main contribution of this paper is the extension of
the framework to a 3-D formulation, involving additional
expressions for height control and formation scaling in the
vertical direction. We present simulation results using the
Webots high-fidelity robotic simulator with a custom odor and
wind modeling plugin, as well as real-robot validation results
obtained in the same wind tunnel using a set of ground robots
and an additional node capable of 3-D movement through its
anchoring to a Cartesian robot inside the wind channel.

The paper is organized as follows: Section II outlines
our method, starting with an introduction to graph-based
formation control and then describing our plume tracking
algorithm and implementation; Section III explains our
experimental scenarios, both for simulation and wind tunnel
experiments, and discusses the results obtained; finally,
Section IV summarizes our work and draws conclusions
and plans for future research.

II. PROPOSED METHOD

Our method is based on three main components, each
yielding an individual movement vector: formation control
(uf ), upwind movement (uw), and plume centering (uc). The
desired direction movement of each vehicle is computed as
a weighted sum of each component. This section describes
each component in detail.

A. Background on graph-based formations

Laplacian formation control is a solution to the problem
of guiding a group of individual mobile robots to a desired
spatial formation. In this approach a graph G = (V,E) is
defined in which vertices V correspond to controlled mobile
robots and edges E correspond to inter-robot communication
and relative positioning links. Built upon basic linear algebra,
a stable solution to the formation control problem in two
dimensions [34] is given by

ẋ = − (L ⊗ I2) (x− b) , (1)

where L = I ·W·IT (called the Laplacian matrix) is obtained
from the incidence matrix I that defines the edges of G and
the optional diagonal weight matrix W used to tune the
weights assigned to the edges in the graph. I2 is simply a
2×2 identity matrix (for the case of a two-dimensional plane).
The (x, y) absolute position vector for all robots is given



by x, and the desired offsets of each robot to the formation
centroid are given by the bias matrix b.

In the above formulation, the absolute position of each
robot may be trivially replaced with the relative position with
respect to the neighboring robots. In this case, (1) yields
the goal position in the local coordinates of the robot. Most
robotic platforms do not measure relative positions in x and
y but, instead, use polar exteroceptive sensors (e.g., infrared,
LASER) to obtain the range and bearing to neighboring
robots.

Finally, the aforementioned movement goal for each robot
i is given by

ẋ′
i = −

N∑
j=1

Li,j

(
x′
j − bxj

)
ẏ′
i = −

N∑
j=1

Li,j

(
y′
j − byj

) , (2)

where bxj and byj are respectively the desired biases in the
x and y dimension of robot j and Li,j corresponds to the
entry (i, j) of the Laplacian matrix L. It is mathematically
proven and experimentally shown that this Laplacian control
law makes the mobile robots converge to the desired
formation [35].

B. Adaptive 3-D formation control

For a 3-D formation, the governing equation that yields
the 2-D movement vector stated in (2) continues to apply
with the straightforward addition of an equivalent expression
for the z axis and new biases bzj . The first component of the
algorithm, formation control, thus becomes

uf = −



N∑
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Li,j

(
x′
j − bxj

)
N∑

j=1

Li,j

(
y′
j − byj

)
N∑

j=1

Li,j

(
z′j − bzj

)


. (3)

As stated, (3) drives a group of robots to the formation
specified by the bias vectors but does not guarantee a
particular orientation of the formation. Since our goal is
to place robots at specific locations within the plume section,
we replace the bj vector in (3) with a dynamic bias vector
βj given by

βj = Rz(θw)

suw 0 0
0 scw 0
0 0 sv

bxjbyj
bzj

 , (4)

where Rz(θw) denotes a rotation matrix about the z-axis
going through the robot center by the azimuthal angle of the
wind velocity θw. This rotates the bias vectors, and therefore
the formation, to keep it oriented towards the wind.

In order to better track the plume, we implement an
additional mechanism to adjust the formation biases based on
the odor concentration readings. The scaling factors suw, scw,
and sv in (4) allow us to dynamically scale the formation
to adapt to the plume shape. We choose to keep a constant

upwind scaling (suw), and adjust scw and sv according to
the laws

ṡcw = kcw((cl + cr)− cc) (5)
ṡv = kv(0.66ct − cb), (6)

where cl is the mean concentration reported by the Nl

robots on the left side of the plume (i.e., whose coordinate
in the upwind–crosswind frame is negative) and cr is
analogous for the robots on the right side. Likewise, the
quantities ct and cb used for vertical scaling are the average
concentrations measured by the top and bottom robots. The
center concentration cc is the mean concentration reported by
robots in the center (i.e., the robots with null crosswind bias),
of particular use to scaling. The process gains kcw and kv
affect the dynamic response of the controllers but not their
points of convergence.

The goal of (5) is to match the sum of the side
concentrations to the center concentration so that as the plume
narrows or widens, the formation does too. The goal of (6)
is to match the odor concentration measured by robots on
the ground and in the air, i.e., encompassing the plume with
the two groups, not only allowing us to determine the source
height but also the vertical shape of the plume. Equation (5)
results in a mean bottom concentration cb that follows 2

3
of the bottom center concentration; since we work with a
single centered aerial robot, we adjust (6) accordingly. For a
vertically symmetrical formation, this factor would be 1.

It is worth noting that the positions used to assign
measurements are the steady-state positions in the formation
specification and not the current positions of each robot. This
may result in erroneous concentration measurements during
the initial convergence but, as the resulting effect impacts all
robots similarly, the system spontaneously recovers.

C. Upwind urge

Equation (2) drives the robots to a desired formation around
the center of mass of the group; once the robots arrive at their
desired positions, they stop. However, to find the source of a
gaseous distribution, the robots must move in the direction
of the source. Because advection (flow transport) is the main
factor of displacement of odor patches in our environment,
we implement upwind movement for each robot in the form

uw = Rz(θw)

10
0

 . (7)

This expression projects an upwind movement vector in
the local coordinates and implicitly assumes that the wind
is approximately parallel to the ground plane. While it
is straightforward to modify the algorithm in a way that
eliminates this constraint, wheeled robots are unable to track
a plume away from the ground plane; such a scenario would
require a team consisting entirely of robots moving in 3-D
space.



D. Plume centering
In addition to staying in formation and moving towards

upwind direction, the robots must remain in the plume in
order to eventually reach the source. Although the plume is
patchy, the time-averaged odor concentration will, in principle,
decrease as we move away from its center. Therefore, we
include a plume centering component that drives the formation
cross-wind towards the side with the highest concentrations
and is given by

uc = Rz(θw)

 0

−umax
c +

2umax
c

1+e−(cl−cr)/kl

0

 , (8)

where umax
c is the maximum crosswind force that can be

requested by the algorithm and the constant kl is proportional
to the dynamic range of the sensor and is manually tuned to
get a smooth response.

Equation (8) introduces a generalized logistic response on
the differential odor reading, with uc reflecting the magnitude
of misalignment of the robot relative to the center line of the
plume. If the concentration reported by the robots on the left
and on the right is balanced (i.e., cl = cr), then the formation
is close to centered and uc approaches 0.

In a scenario with ground robots, it makes no sense
to include a vertical centering component: centering, by
definition, would require the entire formation to move up
or down, and this is not physically possible with this setup.
Vertical adjustments are, for these reasons, solely within the
scope of the dynamic bias control.

E. Final movement vector
The final movement goal for each robot u = [ux, uy, uz]

′

combines the desired movement vector of each component
in the weighted sum

u = kwuw + kcuc + kfuf (9)

and points, in the local frame, towards the direction the
robot should move in so as to better optimize a specified
balance of the three behaviors. The weights kw, kc, and kf
allow us to adjust the relative influence of each component,
although in this particular work we retain uniform weights
kw = kc = kf = 1.

The aerial robot is holonomic in R3 and can therefore track
the commanded u directly. For the differential drive ground
robot, the reference u needs to be handed off to a lower-level
controller to compute appropriate linear and angular speeds.
We implement the same controller used in [20].

III. EVALUATION AND RESULTS

The proposed method has been implemented and evaluated
in simulation and in a real wind tunnel. We now present our
experimental setup, scenarios, and results.

A. Simulations
To evaluate the performance of the proposed method, we

designed a simulated controlled environment in Webots [36],
configured and calibrated to approximate real world
characteristics of the environments, sensors, and actuators.

Fig. 1. Webots simulation setup. Four (three ground and one aerial) robots
track the odor plume, with odor filaments drawn in blue.

1) Setup: The simulation arena, shown in Fig. 1, is a
20× 4× 4 m3 volume. The odor simulation is based on the
filament model proposed by Farrell et al. [37] and generates
an intermittent 3-D plume similar to the one observed in
the wind tunnel. Odor is modeled as a set of filaments, each
containing a constant amount s = 8.3 × 109 of molecules. At
each time step, the position of a filament is updated according
to a uniform wind field and a stochastic process consisting
of a vector of three independent Gaussian random variables.
More details of the odor dispersion simulation in Webots are
provided in [32].

The virtual odor source releases 100 filaments per second
with an initial width of 10 cm and initial position distributed
over the circular area of the source. The odor concentration
measured by a robot is the sum of the contribution of all
filaments, which decays exponentially with the increasing
distance to the center of a filament. In order to better cope
with the patchiness of the plume, samples are run through a
sliding window filter that outputs the highest amongst the 50
most recent readings, a window of 1.6 s.

2) Robots and scenario: We use a four-robot team
consisting of three ground robots and one moving in 3-D.
For simplicity, we use the built-in model of the Khepera III
[38] for all robots, including the aerial one. As the Khepera
is a wheeled robot and incapable of vertical movement, we
employ a supervisor controller to freely displace the aerial
robot in 3-D. This is a good approximation of the real setup
in the wind tunnel, detailed in Section III-B.1.

The range, bearing, and elevation mechanism is based
on infrared emitters. Measurements are subject to Gaussian
noise drawn from independent random variables with standard
deviation of 0.1 rad in bearing and elevation and 10% in
distance, and are locally converted to (x, y, z) coordinates.

The source is placed at the 1 m downwind mark, centered,
at varying heights. The chosen odor source heights for
different experimental runs are 0.0, 0.25, 0.5, and 1.0 m.
The robots start approximately 14 m downwind. We use a
triangle formation with the ground robots in a crosswind line
and the aerial robot moving behind the ground flock; the
default biases for the four robots are, in meters,

bx = [0.0 0.0 0.0 −0.5]
by = [−0.5 0.0 0.5 0.0]
bz = [0.0 0.0 0.0 0.15]

(10)

where the first column represents the robot on the left side,
the second column the center robot, the third column the
robot on the right side, and the last column the aerial robot.
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Fig. 2. Formation graph used in the experiments. Node labels correspond
to the indexes in the bias vectors, with node 4 being the aerial robot.
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Fig. 3. (Top) Plot of the horizontal trajectory of the three ground robots for
different plume heights (m). (Bottom) Vertical trajectory of the aerial robot
in the same experiments. The black squares on the left mark the position of
the source, and circles show the robot positions every 40 s.

To approximate the real setup, where care must be taken not
to occlude the view of the overhead cameras, the aerial robot
must always float at a minimum height of 15 cm and lag at
least 50 cm behind the ground robots.

The graph used for the Laplacian formation control is
shown in Fig. 2. Robots take into account their relative
position to all teammates in line of sight.

3) Results: Fig. 3 presents the trajectories followed by the
robot on four discrete simulation runs for different source
heights. In all runs, the robots start in the same positions,
with the formation shifted 0.5 m off-center. The robots start
on the right-hand side of the plot and move left towards the
source.

The ground tracks are shown in the top plot. We can see
that, for low plumes (at h = 0 m and h = 0.25 m), the
robots quickly move to the plume center and reach the end
of the tunnel with the formation aligned to the plume source.
In fact, the only clearly observable difference between the
two scenarios is the formation scaling, due to differences in
the center concentration measured by the top robot. As the
source height increases, the tracking behavior deteriorates.
With h = 0.5 m the formation still moves towards the plume
center and reaches the end approximately 0.2 m off-center,
but no centering effort is observed when the source is at
h = 1 m. As we only use one aerial robot, the centering
behavior is determined by the side robots on the ground.
Thus, in this case where the ground robots are unable to
detect the plume, there can be no lateral adjustments.

In the bottom plot, we can see the aerial robot moving
along the top edge of the plume. For a ground plume, the
aerial robot remains at its lowest defined z bias of 0.15 m.

x (m)0 2 4 6 8 10 12 14Odorre
ading

0100200300400500 LeftCenterRightFlying
x (m)0 2 4 6 8 10 12 14Odorre
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Fig. 4. Plots of each robot’s odor readings for four different odor source
heights (top to bottom, left to right): 0.0 m, 0.25 m, 0.50 m, 1.0 m. For
readability, the signals were smoothed over 500 samples and the y axes use
different scales.

Progressively higher plumes lead to the robot climbing higher.
For a source at 0.5 m the ground robots stop being exposed
to the plume as they approach the source, and the aerial robot
compensates by dropping. Finally, for the top height of 1 m,
the plume is not detected by any robot (readings below 0.1
in a 0–1000 range) and the formation merely moves upwind.

The above results are confirmed by Fig. 4, which shows the
odor readings for each robot over the course of the experiment.
In the interest of readability, we plot a smoothed signal (using
a 500-sample moving average filter) instead of the noisy
original signal; for an example of the actual measurements
the robots use when making decisions, we refer the reader
to Fig. 7.

It is clear from these results that our approach fails when
plumes are too high up in the air. This is to be expected,
as our solution depends on ground robots that cannot move
upwards and are therefore unable to trace the plume. For
plumes at ground level, the solution is effective but there are
limited gains from having an aerial robot in the formation.

In order to assess the performance impact of introducing
3-D tracking at plume heights where all robots can detect
the plume, we evaluated our algorithm with and without the
aerial robot. For each configuration and plume height (0.10 m,
0.15 m, 0.20 m, 0.25 m and 0.30 m), we ran 100 simulations
and measured the final absolute cross-wind distance error
between the formation center and the source location. The
error is only calculated along the horizontal lateral direction
so as to produce comparable results. The final lateral errors
in millimeters, presented in Table I, show that the 4-robot
formation consistently outperforms the solution featuring only
ground robots in this range, yielding lower mean error with
lower standard deviation. Furthermore, the 3-D algorithm is
more resilient to increased plume heights, its performance
only beginning to degrade when the source reaches 0.25 m.

B. Wind tunnel experiments

The wind tunnel experiments followed our initial simulation
trials and were meant to validate the effectiveness of the
algorithm using real robots and sensors. The algorithm was
tested in our wind tunnel using a team of Khepera IV robots,
one of which mounted on a 3-D traversing system to emulate



TABLE I
MEAN ABSOLUTE FINAL CROSSWIND ERROR (LATERAL DISTANCE FROM

THE FLOCK CENTER TO THE SOURCE) FOR DIFFERENT SOURCE HEIGHTS.
EACH ENTRY (IN MILLIMETERS, ALONG WITH STANDARD DEVIATIONS) IS

THE RESULT OF 100 SIMULATION RUNS.

Source Height (mm)
Aerial robot 100 150 200 250 300
With 2.5±1.8 2.5±1.7 2.4±1.8 3.3±2.5 5.2±3.8
Without 3.1±2.3 3.3±2.4 3.8±3.4 4.9±3.5 6.6±4.6

Fig. 5. The wind tunnel setup (left), the emulated aerial robot mounted
on the traversing system (center), and a Khepera IV robot augmented with
odor board and the anemometer board (right).

an aerial robot.
1) Setup: The wind tunnel test channel, shown in Fig. 5

(left), has a usable area of 4× 18 m2 and a height of 1.9 m.
We are able to generate wind speeds of up to 5 m/s, more than
sufficient for emulating realistic scenarios for odor source
localization experiments.

The tunnel is equipped with a 3-axis traversing system,
seen in Fig. 5 (middle). The system receives commands in
the form of goal coordinates and is able to move along the
entire length of the tunnel and position instruments precisely.
In our experiments, a robot is mounted on the traversing
system, facing forward, and used to emulate a UAV.

Absolute positioning inside the tunnel is provided by a
6-camera overhead tracking system running SwisTrack [39].
Our setup is able to track the poses of multiple robots at
approximately 20 Hz.

To generate the odor plume, we use an A15-A ethanol
release bubbler with a 1.2 l/min air pump and position the
outflow hose at the desired source location.

2) Robots and scenario: Shown in Fig. 5 (right), the
Khepera IV robots [40] are augmented with an odor sensing
board and an anemometer board (explained in detail in [41]).
Instead of using infrared ranging, for which we only have
2-D capable hardware, the absolute positions received from
SwisTrack and the traversing system are merged in an external
interface application, and the resulting range, bearing, and
elevation data are sent to the robots over the network.

The aerial robot does not actuate its motors, and instead
sends commands to an auxiliary program that operates the
traversing system. Due to safety and mechanical restrictions
on the vertical movement of the traversing system, our
operation range extends from a bottom height of 0.23 m
to a top height of 0.53 m. The limited range impacts our
ability to test the algorithm: any source too close to the floor
or above a certain height results in saturation of the vertical
control.

We use the same formation shape and graph structure as in
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Fig. 6. Top and side view of the trajectories described using the 3-D
controller with the odor source placed at h = 0.18 m. The ground robots
are drawn in red and the aerial robot in blue. Circles and black lines are
plotted connecting the robot positions every 40 seconds, and the odor source
is represented by the black square (size not to scale) on the left side. The
trajectories are smoothed over a 1.5 s moving window to suppress SwisTrack
noise.
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Fig. 7. Odor readings for top robot (left) and bottom robots (right) over time,
corresponding to the experiment shown in Fig. 6. The individual readings
are plotted along with a 500-sample moving average for readability.

simulation. The three ground robots are in a line formation,
with the aerial robot centered but now trailing 1 m behind so
as not to obstruct the camera view. The chosen odor source
heights for this setup are 0.0, 0.18, 0.37, and 0.5 m, laterally
centered in the tunnel (at y = 2), near its inlet.

3) Results: Fig. 6 is an example that shows the trajectories
followed by the robots from their random starting positions
(on the right) to the odor source (on the left). The source
in this experiment was placed at a height of 0.18 m. The
trajectories are smoothed using a sliding window of 1.5 s to
remove SwisTrack noise and more accurately match the real
paths.

On the ground plane, the robots are quick to align with
the source and trace the plume center, although they can be
seen slightly drifting on the final 1 m stretch. Because the
source is placed higher than the sensors, robots cease to be
able to detect the plume as they get close to the source and
turn based on spurious environmental readings.

This final concentration drop can be seen on Fig. 7, which
shows the concentration readings over time (left-to-right
evolution in the time plot corresponds to right-to-left evolution
in the position plot), both in raw form and smoothed over a
40-second sliding window for easier reading. The left plot
shows the top robot readings and the right plot shows the
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Fig. 8. Influence of each component on the movement of the aerial robot
during the experiment shown in Fig. 6. The norm of each vector is plotted
over time.

averaged ground robot readings.
The concentration plots also help understand the vertical

track, in which we see the aerial robot starting from the
lower limit and progressively climbing. For a source height
of 0.18 m, the robot remains low for the first 2 m of
upwind movement. Afterwards, it starts detecting a higher
concentration and climbs to trace the plume, reaching the
end at approximately 0.42 m and enclosing the source. The
bottom concentration tracks the 2

3 of the top concentration,
as designed.

Fig. 8 shows the influence of each algorithm component
on the final x − y movement vector of the aerial robot in
the same experiment. As the robots start in random positions,
there is a first phase in which formation control dominates
while driving the robots to their designated spots; after the
formation is achieved, the magnitude of uf decreases to
under 0.5 (arbitrary units). Plume centering acts through
minor adjustments that suffice to steer the group and track
the plume. Throughout the experiment, the upwind movement
vector uw remains constant (in norm, although not in angle)
and is the dominant force in the movement of the robot.

The robots adapt their trajectories as long as at least one
senses some odor patches. Fig. 9 shows the trajectory of the
robots in another example run with a source at 0.37 m. The
odor source is elevated but still detectable, so the aerial robot
attempts to move up to match the odor concentrations of
the ground robots. Due to the range limit of the traversing
system, the robot saturates at the maximum height.

The odor readings in Fig. 10 show that, in this experiment,
the aerial robot senses significantly higher concentrations than
the ground robots, playing an important role in tracking the
plume. Working with a single aerial robot, however, the above-
ground concentration readings only yield information about
the vertical profile of the plume and the plume centering
performance degrades as the ground concentration drops.
Having two or more flying robots would make it possible to
get a better sense of the full 3-D profile and steer the team
towards the source even at times when the plume does not
reach the ground.

IV. CONCLUSIONS

We presented a distributed algorithm for multi-robot 3-D
odor plume tracking using a Laplacian feedback formation
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Fig. 9. Top and side view of the trajectories of the robots with the odor
source placed at h = 0.37 m. The color code is the same used in Fig. 6.
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Fig. 10. Odor readings for top robot (left) and bottom robots (right) over
time, corresponding to the experiment shown in Fig. 9.

controller. Our approach uses an heterogeneous group of
ground and aerial robots to follow a chemical plume to its
source based on spatially distributed odor concentration and
wind flow measurements.

We provided qualitative and quantitative results for the
performance of the algorithm, obtained in a high-fidelity
simulation featuring wind and odor modelling. Systematic
simulations show that our 3-D algorithm can outperform a
similar solution using only ground robots, reducing the final
lateral error by up to 36% for source heights at which both
the ground and aerial robots are able to detect the plume.
Furthermore, the algorithm is able to trace the plume shape
in the vertical direction too, providing additional information
to the user.

In addition to the performance evaluation obtained in
simulation, we also presented real-world results gathered in a
wind tunnel, which validated the functionality of the algorithm
in a real setup. Despite the constraints of the environment,
which prevent us from doing a full quantitative assessment,
we experimented with different plume heights and showed
that the robots successfully followed the plume to its source.

Our work is an early foray into multi-robot 3-D plume
tracking and uses an idealized aerial robot. In the future, we
expect to replace our traversing system setup with a quadrotor
and study how to cope with and exploit the turbulent airflow
generated by the robot. We also intend to expand the number
of aerial vehicles, allowing for differential measurements at
different heights, as well as experiment with homogeneous



aerial formations. Finally, we intend to move towards more
realistic conditions, both within the constrains of the wind
tunnel and in outdoor settings.
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[26] L. Osório, G. Cabrita, and L. Marques, “Mobile robot odor plume
tracking using three dimensional information,” in Proc. European Conf.
on Mobile Robots, 2011, pp. 165–170.

[27] M. Reggente and A. Lilienthal, “The 3D-Kernel DM+V/W algorithm:
using wind information in three dimensional gas distribution modelling
with a mobile robot,” in Proc. IEEE Sensors, 2010, pp. 999–1004.

[28] S. Badia, U. Bernardet, A. Guanella, P. Pyk, and P. Verschure, “A
biologically based chemo-sensing UAV for humanitarian demining,”
Int. Journal of Advanced Robotic Systems, vol. 4, no. 2, pp. 187–198,
2007.

[29] P. P. Neumann, S. Asadi, A. J. Lilienthal, M. Bartholmai, and J. H.
Schiller, “Autonomous gas-sensitive microdrone: wind vector estimation
and gas distribution mapping,” IEEE Robotics & Automation Magazine,
vol. 19, no. 1, pp. 50–61, 2012.

[30] P. P. Neumann, V. H. Bennetts, A. J. Lilienthal, M. Bartholmai, and J. H.
Schiller, “Gas source localization with a micro-drone using bio-inspired
and particle filter-based algorithms,” Advanced Robotics, vol. 27, no. 9,
pp. 725–738, 2013.

[31] H. Ishida, K. Yoshikawa, and T. Moriizumi, “Three-dimensional gas-
plume tracking using gas sensors and ultrasonic anemometer,” in Proc.
IEEE Sensors, 2004, pp. 1175–1178.

[32] J. M. Soares, A. P. Aguiar, A. M. Pascoal, and A. Martinoli, “A graph-
based formation algorithm for odor plume tracing,” in Proc. Int. Symp.
on Distributed Autonomous Robotics Systems, ser. Springer Tracts in
Advanced Robotics, vol. 112, 2014, pp. 255–269.

[33] T. Lochmatter, E. Göl, I. Navarro, and A. Martinoli, “A plume tracking
algorithm based on crosswind formations,” in Proc. Int. Symp. on
Distributed Autonomous Robotics Systems, ser. Springer Tracts in
Advanced Robotics, vol. 83, 2010, pp. 91–102.

[34] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[35] S. A. Gowal, “A framework for graph-based distributed rendezvous
of nonholonomic multi-robot systems,” PhD Thesis 5845, École
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