
Witness-Authenticated Key Exchange Revisited
Improved Models, Simpler Constructions, Extensions to Groups

Matteo Campanelli1, Rosario Gennaro1,2, Kelsey Melissaris2, and Luca Nizzardo1

1 Protocol Labs
{matteo,rosario.gennaro,luca.nizzardo}@protocol.ai

2 City University of New York
kelseymelissaris@gmail.com

Abstract. We revisit the notion of Witness Authenticated Key Exchange (WAKE) where a party can
be authenticated through a generic witness to an NP statement. We point out shortcomings of pre-
vious definitions, protocols and security proofs in Ngo et al. (Financial Cryptography 2021) for the
(unilaretally-authenticated) two-party case. In order to overcome these limitations we introduce new
models and protocols, including the first definition in literature of group witness-authenticated key
exchange. We provide simple constructions based on (succinct) signatures of knowledge. Finally, we
discuss their concrete performance for several practical applications in highly decentralized networks.

1 Introduction

Public-Key Cryptography as introduced in the seminal paper by Diffie and Hellman [DH76] allows two
parties who have never met to exchange confidential information by either interactively establishing a secret
key or by means of a single encrypted message from the sender to the receiver [RSA78]. The identity of
the communicating parties is traditionally established through the use of certificates: digital signatures from
trusted authorities binding the parties’ identities to their public keys used to encrypt the messages.

More flexible ways to determine the recipient of an encrypted message were devised with identity-
based [Sha84] (where public keys can be arbitrary strings) and attribute-based [SW05] encryption (where
messages are encrypted under security policies and only parties holding attributes satisfying the policy can
decrypt) removing the need to obtain certificates in advance of sending the message.3

Witness encryption [GGSW13] is arguably the most general way to determine the intended recipient of
an encrypted message. In WE a message is encrypted under a specific instance ϕ of an NP language L, and
can be decrypted if and only if ϕ ∈ L, using an efficient decryption procedure that takes a witness w for ϕ
as input4. Remarkably, no trusted party is required for WE: the secret decryption key is the witness itself.

In a theoretical sense all of these notions only make sense in the non-interactive setting of a sender
encrypting a message for a receiver. Indeed, in the interactive key agreement setting, certificates can be
sent as part of the communication flow in the case of IBE/ABE and generic secure two-party computation
techniques can be used to establish a secure channel between a sender and a receiver who knows a specific
witness. However interactive versions of these models have been introduced mostly for efficiency reasons
(e.g. [FG10, BBC+13, CCGS10, NMKW21]).

Another, perhaps more important, advantage of looking at interactive key agreement in these models is
that they additionally allow for the establishment of group keys which enable confidential communication
among arbitrary numbers of authorized participants.

In this paper we revisit the notion of witness authenticated key exchange (WAKE) introduced in [NMKW21],
by (i) pointing out shortcomings in their definition and proofs, and (ii) proposing a new and much simpler
protocol for the two-party case. We then (iii) extend our results to the group setting and construct the first
witness-based group key agreement protocol.
3 In these models there is a trusted party which issues secret keys to the users matching respectively their identity

and their attributes (and as a consequence can decrypt all messages).
4 The original notion requires that a witness is sufficient to decrypt but does not guarantee that knowledge of w is

necessary for a successful decryption.



1.1 Motivation

As mentioned above, the main application of witness based key exchange is the establishment of secure
communication channels based on arbitrary conditions that are satisfied by what the parties know or hold.
The lack of a centralized trusted authority that issues secret keys or certificates makes this tool particularly
interesting for decentralized applications, where parties can dynamically and flexibly confidentially connect
with other parties based on common policies. Decoupling authentication and the notion of identity also
allows for more flexible deniable and anonymous authentication. In this section we present some concrete
examples, many of them exploiting our novel construction for groups.
Dark Pools Transactions. This was the original motivation in [NMKW21]. In this scenario Alice wants
to confidentially negotiate with a party who has enough funds. Given a public commitment to his balance
Bob can establish a secret key with Alice if his funds satisfy her condition. Here the witness w is the balance
held by Bob and the NP relation that must be satisfied is that w is the correct committed value and satisfies
Alice’s conditions.
Chat with the same wallet. Several services are offered that allow parties to create chatrooms and
schedule meetings amongst parties that hold similar tokens in a blockchain (e.g. [cwe, mee]). A group witness-
authenticated key exchange can be used to establish secure communication channels for such tasks. Thanks
to the inherent flexibility of a witness key agreement these schemes can also be extended to more general
conditions (e.g. confidential chatrooms for owners of NFTs by a particular artist).
Retrieval Markets. In decentralized storage systems such as Filecoin [Proa] and IPFS [Prob] files are
stored by providers and addressed by a content identifier (CID) which is basically a cryptographic hash of
the file. While the CID does not say where the file is stored, it does provide a unique handle for the file
to be retrieved later. The CID also serves as a commitment to the file and therefore providers can use the
file itself as a witness to establish confidential negotiation channels with clients interested in its retrieval.
Similarly, providers storing the same file (or files satisfying certain properties) can establish a confidential
group channel to communicate via a group witness key agreement.
Decentralized Anonymous Routing. Several proposals have been put forward for decentralized naming
and routing protocols over the internet (see e.g. [han] and [ens]). We believe that WAKE can play an important
role in securing such protocols since it provides a method with which parties can ”authenticate” themselves
without the need for centralized trusted authorities.

1.2 Our Contributions

– A critique of the previous model and construction in [NMKW21]: we observe that the definition
of witness key agreement in [NMKW21] is not sufficient for the proposed applications. We also point out
limitations of their construction.

– A new definition for WAKE: we rectify the above limitations and propose a new definition for (group)
WAKE (Witness Authenticated Key Exchange).

– A construction of U-WAKE: we provide a definition for Unilaterally Witness Authenticated Key Ex-
change (two-party key exchange where only one party is authenticated) as a special case of WAKE, along
with a simple construction for U-WAKE. This construction generalizes UAKE [DF17] in the standard set-
ting.

– A construction of (group) WAKE: we show a compiler turning any key exchange with “passive security”
into one with full security in the witness-based setting. This compiler revisits that in [KY03] for standard
group key exchange. We also show a three-round WAKE protocol, obtained by applying our compiler to
the passively secure key exchange from [BD95].

– Evaluation in practice and applications: we show the feasibility of our construction by experimentally
evaluating its efficiency.

1.3 Technical Overview

Definition of WAKE. Our WAKE definition extends the definition of unilaterally-authenticated key agree-
ment from [DF17] in the PKI model to work in the case of witness authentication. This is not a trivial
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task: one main difference is how to model the adversary’s knowledge with respect to the NP instance ϕ,
acting as the “public key” for the authenticating party. In the PKI case the adversary does not know the
secret key of the honest parties, but in the WAKE case it is conceivable that for a specific instance ϕ the
adversary may know the corresponding witness w. Under these circumstances obviously we cannot prevent
the adversary from successfully authenticating, but we can still require that the adversary is not able to de-
crypt conversations involving any honest parties that have authenticated with respect to the same instance
ϕ. This is somewhat the equivalent of perfect forward secrecy in the PKI case, where compromise of the
long-term secret key of a party does not compromise the secrecy of the session keys established by that party.
Our definition requires the extraction of a witness from any adversary that successfully authenticates and
completes a WAKE.

By leveraging interaction we obtain stronger security properties than (non-interactive) witness encryption,
both in terms of confidentiality (parties can confidentially exchange a secret even if the adversary knows
a witness) and authentication (we guarantee knowledge of a witness upon successful authentication). We
finally remark that our confidentiality definition also guarantees perfect forward secrecy.

Simulatability. In general it is not necessary to enforce that no information about the witness is leaked
during the protocol as long as we can prove that knowledge of the witness is required to successfully authen-
ticate. This brings up an interesting question: assume we have a protocol where the adversary can learn a
bit of the witness. After several executions, the adversary will learn the witness and be able to authenticate
and perform the WAKE on its own. This would obviously be a problem in PKI-based KA protocols, as the
adversary would be able to impersonate a different party. But in WAKE such a protocol does not violate the
definition of security since once the adversary is able to complete the protocol it does know the witness. This
leads us to introduce an additional simulatability condition enforcing that no information about the witness
is leaked.

Our Protocol. Our two-party protocol uses Signatures of Knowledge [CL06] to perform witness authentica-
tion. The initiator (who does not have the witness) sends the “public key” for a Key Encapsulation Module
(KEM) and the responder sends the KEM message “signed” with a Signature of Knowledge of the witness.
The initiator accepts if the signature verifies and then decrypts the session key from the KEM message. We
point out that [NMKW21] had ruled out the use of SOK, due to problems with their proposed solution but
our solution is different from that proposed in [NMKW21].

Group WAKE Construction. The group protocol adapts the Katz-Yung [KY03] general compiler (which
maps unauthenticated group key exchange protocols to authenticated ones) to be able to use Signatures of
Knowledge. Then, following [KY03], we obtain a 3-round group WAKE by applying our transformation to
the Burmester-Desmedt [BD95] group key exchange. We point out that in our group protocols, each party
may refer to a different NP statement when authenticating, if required by the authentication policy in place.

1.4 Related Work

1.4.1 Comparison to and Limitations of [NMKW21] Model and Definitions: A basic require-
ment of key agreement schemes is that one should not to able to learn anything about the session-key. This
is usually modeled by requiring that the adversary should not be able to distinguish the real session key
from a random key (in a session not tampered by the adversary obviously). Indistinguishability is required
to claim that exchanging messages in a session protected by the key is equivalent to sending those messages
over a secure channel. We note that an adversary can either be passive (eavesdropping exchanges by honest
players), or active (man in the middle).

The definition in [NMKW21] does not follow the typical modeling of authenticated key agreement proto-
cols, and in doing so weakens the security of the session key. In fact, indistinguishability is only required for
passive adversaries. A separate definition for active adversaries only requires unpredictability of the session
key.

Constructions. Both our construction and that in [NMKW21] rely on non-interactive arguments of knowl-
edge; [NMKW21] employs designated-verifier SNARKs while we use succint, publicly-verifiable signatures of
knowledge.
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A primary limitation of [NMKW21] is that it requires a trusted setup every time a new party wants to
initiate a key exchange5 (see Fig. 4 and end of Section 4 in [NMKW21]). This is due to the designated-
verifier argument systems. Although the verifier often has access to “all the secrets” used during parameter
generation it is still necessary for a trusted party to ensure that the parameters are computed correctly.
This is true of the specific instantiation considered, for example ([Gro16]). We provide general and modular
constructions, along with concrete instantiations, without this limitation.

Finally, we find it unclear whether the security of the construction in [NMKW21] actually holds. Their
construction and proof use a variant of the techniques in [BCI+13] where secret points in the setup are en-
crypted with a limited-malleability encryption scheme. The construction in [NMKW21] diverges, however, in
that they add additional encryptions of the randomness used to encrypt the other ciphertexts. This introduces
additional leakage and plausibly requires a stronger encryption scheme: one with randomness-dependent mes-
sage security [BCPT13]. Nonetheless, neither the theorem statement nor the proof in [NMKW21] explicitly
acknowledges this fact.

1.4.2 LAKE Language Authenticated Key Exchange LAKE [BBC+13] (and its predecessor CAKE [CCGS10])
enables two parties to establish a shared key over an insecure network. Authentication is done on the basis
of words in languages; participants terminate with a common session key if and only if each participant has
knowledge of a word that lies in the language defined by their partner. This implies that not only does the
witness remain secret, but that the language and the statement are also secret. In contrast, our definition of
WAKE does not guarantee secrecy of the statement. Additionally, LAKE is defined in the UC setting with a
common reference string while our WAKE definitions are game-based.

The construction provided handles algebraic languages (languages which admit a smooth projective hash
function [CS98]) and therefore is not as general as WAKE. There is no mention of group key agreement in
[BBC+13, CCGS10], whereas WAKE is defined for groups. The construction provided in [BBC+13] gives
a three round protocol with an additional preliminary round. Our two-party U-WAKE protocol, when run
bilaterally, can achieve WAKE for two parties in two rounds.

1.4.3 Conditional Disclosure of Secrets Conditional disclosure of secrets (CDS) [GIKM98] is an in-
teractive primitive that allows a Sender to disclose a secret message m to a Receiver holding some secret
input w under some condition C on w. We now show a CDS protocol based on Fully Homomorphic Encryp-
tion (FHE)6 for any NP Language. On input a language L and an instance ϕ, let R be the corresponding
relation for L (i.e. R(ϕ, w) = 1 if ϕ ∈ L and w is the witness). The Initiator (who owns the witness) sends
an FHE public key E and the value c = E[w] to the Responder, who, using the FHE property, sends back
c′ = E[r(R(ϕ, w) − 1) + m] where r is a uniform random value. The Initiator can now decrypt c′ to m if
(ϕ, w) ∈ R or a random value otherwise.

It would be tempting to use the above protocol to establish a session key (by setting the session key K
as m in the above protocol). However that would lead to an easy “malleability” attack, where instead of
computing r(1−R(ϕ, w))+K, the responder computes r(1−R(ϕ, w))+K ′ where K ′ is a session key related
to K. This will break the indistinguishability condition on K.

The above attack can probably be thwarted by adding a zero knowledge proof that the Responder
really computed r(1 −R(ϕ, w)) + K and knows r, K. But this brings us back to our solution requiring the
computation of a ZK proof over the relation R, this time with the FHE overhead on top. On the other hand
it has the advantage of putting the cost of the ZK proof on the party who does not know the witness which
could be an advantage in some cases (e.g. when the party with the witness has to establish many sessions).

1.5 Outline

We define our mode for (group) WAKE in section 3.1. We then specialize it to the unilaterally-authenticated
case in section 4; we provide a simple construction in that same section. We show a compiler from passively
5 Although, if the same party wants to run multiple key agreements on the same relation, it could potentially reuse

the setup.
6 It is possible to build CDS also from additively homomorphic encryption [AIR01] where however communication

grows linearly in the description of the condition C
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secure to actively secure (group) WAKE in section 5; we elaborate on how to instantiate it in section 6. Finally
in Sections 7 and 8 we respectively show how to optimize our constructions with an offline preprocessing and
discuss their concrete practical costs .

2 Preliminaries

2.1 Notation

The concatenation of two strings, a, b ∈ {0, 1}∗, is denoted a||b, the concatenation of two vectors u =
(u1, . . . , un) and v = (v1, . . . , vm) is denoted u||v = (u1, . . . , un, v1, . . . , vm). We write x ← X to denote
sampling the element x uniformly at random from the set X, x ← D to denote sampling x according to
distribution D, and x← A(y) to denote running algorithm A on input y to get output x.

The security parameter is denoted λ and is considered public. We say a function f is negligible if
|f(λ)| = λ−ω(1). PPT is used to denote probabilistic polynomial time. A participant U is initialized with
inputs (input1, . . . , inputn) using square brackets: U [input1, . . . , inputn]. A protocol run between participants
U1, . . . , Uℓ is written as ⟨U1, . . . , Uℓ⟩. For an oracle O we use AO to say that algorithm A has access to oracle
O. The keyspace in a key exchange is denoted K.

2.2 Key Encapsulation Mechanism

Definition 1 (Key Encapsulation Mechanism (KEM)). A key encapsulation mechanism is defined by
a triple of algorithms (KG, Encap, Decap) with the following syntax:

KG(1λ)→ (ek, dk) : the key generation algorithms is randomized and outputs an encapsulation and a decap-
sulation key.

Encap(ek)→ (C, k) : the encapsulation algorithm is randomized and outputs a ciphertext C and a session
key K.

Decap(dk, C)→ k : the decapsulation algorithm is deterministic and retrieves the session key from the ci-
phertext and the decapsulation key.

For correctness we require that for all (ek, dk) output by the key generation algorithm, ke = kd for
Encap(ek) → (C, ke) and Decap(dk, C) → kd. For CPA security we require that an adversary cannot distin-
guish the real session key from a random one.

Definition 2 (KEM-CPA). We say that a KEM is CPA-secure if for any PPT adversary A and for any
λ ∈ N the advantage of A, as defined, is negligible:

AdvKEM-CPA,A(λ) := 2·Pr[ExpKEM-CPA,A(λ) = 1]− 1 ≤ negl(λ)

where ExpKEM-CPA,A is defined in fig. 1.

2.3 Signature of Knowledge

A signature of knowledge allows signers to produce signatures that verify under the condition that they were
generated with knowledge of a witness to associated statement ϕ.

Definition 3 (Signature of Knowledge (SOK)). A Signature of Knowledge is a tuple of four efficient
algorithms (SSetup, SSign, SVfy, SSimSetup, SSimSign), where R is a relation generator and {Mλ}λ∈N a se-
quence of message spaces, with the following syntax:

SSetup(1λ, R)→ pp : the setup algorithm is randomized and takes as input a relation R ∈ Rλ, and the
security parameter λ, and returns public parameters pp.

SSign(pp, ϕ, w, m)→ σ : the signing algorithm is randomized and takes as input the public parameters pp,
an instance-witness pair in the relation (ϕ, w) ∈ R and a message m ∈Mλ and returns a signature σ.
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ExpCPA
KEM,A(λ)

b←$ {0, 1}

(ek, dk)← KEM.KG(1λ)
(C, k1)← KEM.Encap(ek)

k0
$←− K

b′ ← A(ek, C, kb)
if b′ = b : output 1
else : output 0

Fig. 1: ExpCPA
KEM,A: Experiment for KEM-CPA security.

Expsimul
SOK,A(λ)

R←Rλ; b
$←− {0, 1}

pp0 ← SSetup(R)
(pp1, τ)← SSimSetup(R)

b′ ← ASb
ppb,τ (ppb)

if b = b′ : return 1
else : return 0

S0
pp0,τ (ϕi, wi, mi)
assert (ϕi, wi) ∈ R ∧mi ∈Mλ

σi ← SSign(pp0, ϕ, w, m)
return σi

S1
pp1,τ (ϕi, wi, mi)
assert (ϕi, wi) ∈ R ∧mi ∈Mλ

σi ← SSimSign(pp1, τ, ϕ, m)
return σi

Fig. 2: Expsimul
SOK,A: Experiment for SOK perfect simulatability.

SVfy(pp, ϕ, m, σ)→ {0, 1} : the verification algorithm is deterministic and takes as input the public param-
eters pp, an instance ϕ, a message m ∈ Mλ and a signature σ, and outputs either 0 for reject or 1 for
accept.

SSimSetup(R)→ (pp, τ) : the simulated setup algorithm is randomized and takes as input a relation R ∈ Rλ

and returns the public parameters pp and a trapdoor τ .
SSimSign(pp, τ, ϕ, m)→ σ : the simulated signing algorithm is randomized and takes as input some public

parameters pp, a simulation trapdoor τ and an instance ϕ and returns a signature σ.

Perfect correctness requires that the verifier will always be convinced by a signature of knowledge pro-
duced with an instance-witness pair in the relation.
Definition 4 (Perfect Correctness). A signature of knowledge is perfectly correct if for all security pa-
rameters λ ∈ N and for all relations R ∈ Rλ, for all valid instance-witness pairs satisfying the relation
(ϕ, w) ∈ R and for all messages m ∈Mλ:

Pr[SVfy(pp, ϕ, m, σ) = 1 | pp← SSetup(R); σ ← SSign(pp, ϕ, w, m)] = 1

Perfect simulatability requires that a verifier cannot learn anything from a signature about the witness
used to generate that signature. This can be captured by requiring that the signature can be simulated
without a witness.

Definition 5 (Perfect Simulatability). We say that a signature of knowledge is perfectly simulatable if
for any PPT adversary A, the advantage of the adversary Asimul

SOK,A(λ) = 2·Pr[Expsimul
SOK,A(λ) = 1] − 1 = 0,

where Expsimul
SOK,A is defined in fig. 2.

For simulation extractability we require that an adversary cannot generate a new signature with respect
to a statement ϕ without knowledge of a witness w for ϕ, and from any adversary that outputs a verifying
signature we can extract a witness.
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Expsig−ext
SOK,A,EA

(λ)
R← Rλ;Q = ∅
(pp, τ)← SSimSetup(R)

(ϕ, m, σ)← ASSimSignpp,τ (pp)
w ← EA(transA)
assert (ϕ, w) /∈ R

assert (ϕ, m, σ) /∈ Q
return SVfy(pp, ϕ, m, σ)

SSimSignpp,τ (ϕi, mi)
σi ← SSimSign(pp, τ, ϕi, mi)
Q = Q∪ {(ϕi, mi, σi)}
return σi

Fig. 3: Expsig−ext
SOK,A,EA

: Experiment for SOK simulation extractability.

Definition 6 (Simulation Extractability). We say that a signature of knowledge is simulation-extractable
if for any PPT adversary A, there exists a PPT extractor EA such that: Advsig−ext

SOK,A,EA
(λ) = Pr[Expsig−ext

SOK,A,EA
(λ) =

1] ≈ 0, where Expsig−ext
SOK,A,EA

is defined in fig. 3.

2.4 Transcripts and Views

The transcript of a protocol execution is defined to be the concatenation of all messages sent by any partic-
ipant in the execution.

Definition 7 (Protocol Transcript). The transcript of a protocol session between k participants is the
sequence of messages exchanged by the participants during a run of the protocol Π. If Π is n-round then a
transcript T is of the form T = M1

1 ||M1
2 || · · · ||M1

k1
|| · · · ||Mn

1 ||Mn
2 ||Mn

kn
where messages M i

1, . . . , M i
ki

are the
ki messages sent in round i.

All messages are recorded by each party in the order in which they were received so a transcript is
sorted by round, but different participants may have messages appear in different order in the transcript
they recorded. As the transcript for a session will be the session identifier (see Section 3.1) there must be a
notion of equivalence for transcripts containing the same messages but messages within each round appear in
arbitrary order. Two transcripts match if they have the same set of messages in each round. This is formalized
in Definition 8.

Definition 8 (Matching Transcripts). Let T and T̂ be two protocol transcripts and define Ri,T (resp
Ri,T̂ ) to be the set of messages appearing in round i of T (resp T̂ ). We say that T matches T̂ (or T ≡ T̂ ∗)
if Ri,T = Ri,T̂ for all i.

Finally, we define the view of a participant to be the following:

Definition 9 (Participant View). The view of participant Pi, written as viewPi , is defined to be all inputs
and outputs of that participant including the transcript, all oracle queries, oracle responses, and all random
coins given to that participant.

3 Defining WAKE

The goal of WAKE is that for any set of participants engaging in the key exchange protocol, authenticating
with respect to (not necessarily distinct) statements, if each participant has knowledge of a witness to their
associated statement then the participants terminate with a shared key, otherwise the participants terminate
without a session key.

The model proposed is fundamentally similar to that of the group key exchange provided in [KY03] with
minor modifications related to the unique setting of witness-authentication. The most impactful change is
to the concept of identity. In authenticated group key exchange a participant’s identity is associated to their
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public key and is interpreted as participant i is the holder of the secret key corresponding to public key PKi.
Below the public key vector is replaced by a public statement vector Φ = ⟨ϕ1, . . . , ϕℓ⟩ and each participant
Vi claims to have knowledge of a witness wi for the statement of the same index. This, in conjunction with
the simulatability (zero knowledge) requirement, implies that all participants authenticating with respect to
the same statement are indistinguishable. Crucially, any meaningful notion of personal identity is absent;
witness-authentication remains agnostic to the true identity of the sender and instead asks: were these
messages generated with knowledge of a witness?

3.1 Model

We fix a relation R and assume a polynomial-size set of potential participants P = {V1, . . . , Vℓ} for some
polynomial ℓ = ℓ(λ). Each participant U is associated with some public statement ϕU and has knowledge of
a witness wU . We assume that each witness wi is sampled according to an arbitrary distribution Dϕi

such
that (ϕi, wi) ∈ R. The statement vector is Φ = ⟨ϕ1, . . . , ϕℓ⟩ and the distribution over witnesses DΦ is such
that a sample w ← DΦ is a vector of witnesses w = ⟨w1, . . . , wℓ⟩ corresponding to the statements in Φ. The
subscript notation is overloaded for ease; it is convenient to associate participants Vi, statements ϕi and
witnesses wi with the same index i when listing or assigning these values, but it is also convenient to index
statements ϕU and witnesses wU by their associated participant U when discussing a single instance.

Each participant U can participate in polynomially many protocol executions with an arbitrary subset of
potential participants. This is modelled with single use instances denoted Πi

U , meaning the ith instance of
participant U . Each instance Πi

U has the following associated variables, in addition to their statement and
witness ϕU , wU :

– statei
U : the current internal state of the instance

– acci
U : a boolean denoting if the instance has accepted

– termi
U : a boolean denoting if the instance has terminated

– sidi
U : the concatenation of messages sent and received by the instance thus far

– ski
U : the session key

The adversary has control over all communication between the participants in every execution via the
following oracles:

– Send(U, i, M) sends message M to instance Πi
U and returns their reply

– Execute(Ui1 , j1, Ui2 , j2, . . . , Uin , jn): outputs a transcript of an execution between instances Πj1
Ui1

, Πj2
Ui2

, . . . , Πjn

Uin

– Reveal(U, i): outputs the session key ski
U generated by Πi

U

Prior to the first execution of the key exchange these public parameters are generated with a setup
algorithm, pp← SetUp(1λ,R). The SetUp algorithm takes as input the security parameter λ and the relation
R.7 WAKE is also equipped with an additional SimSetUp algorithm, towards simulatability, which is discussed
further below. The common inputs to all participants is (pp, Φ): the set of public parameters for the key
exchange including the relation R, and the public statement vector.

The first message in an execution initiated by some participant U involving participants {U, Ui2 , . . . , Uin}
is realized by the adversary querying Send with input (U, i, U ||Ui2 || · · · ||Uin

). For brevity multiple sequential
messages M1, . . . , Mn can be sent to the instance Πi

U with Send(U, i, M1|| · · · ||Mn). Instances Πi
U and Πj

V

have a record of the same messages being sent throughout the interaction and thus can be said to have
participated in the same interaction if sidi

U ≡ sidj
V according to Definition 8.

Correctness requires that any instances participating in the same execution of Π with valid witnesses to
their associated statements will terminate and accept with equal session keys.

Definition 10 (Correctness). A WAKE protocol Π is correct if for all relations R, for all sets of po-
tential participants P of size ℓ = ℓ(λ), for all participants U, V ∈ P, for all instances i, j ∈ N such that
(ϕU , wU ), (ϕV , wV ) ∈ R, sidi

U ≡ sidj
V and acci

U = accj
V = TRUE then ski

U = skj
V .

7 We notice this syntax can easily be extended to the case where the setup is universal [GKM+18].
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3.2 Security

This subsection discusses the security requirements for WAKE. First we discuss which adversaries should be
considered admissible in the confidentiality and authenticity games (see Definition 13). Then we introduce
the adaptations of the notions of authenticity and confidentiality to the witness-authenticated setting (see
Definitions 14 and 19). Then we discuss the distinction between passively and actively secure protocols (see
Remark 2). Finally we introduce the definition of Simulatability (see Definition 16).
Admissible Adversaries: The goal of an adversary in the authenticity experiment (Figure 5) is to force a
challenge instance to accept without knowledge of a witness: acci

U = TRUE. But, any adversary can convince
any instance Πi

U to accept by playing as a wire between that instance and the authenticated participants,
forwarding messages and responses according to Π without injecting any of her own messages. In summary,
a forwarding A does not adversarially convince Πi

U to accept. The instance would accept because he is
interacting with authenticated participants. A forwarding adversary (Definition 11) forwards all messages
between the challenge instance and instances of participants authenticating with respect to the expected
statements.8 This behavior, referred to as ping-pong by [DF17] in the two party case, is generalized to
groups and modified to witness-authentication in Definition 11.

Definition 11 (Forwarding Adversary). Let P = {V1, . . . , Vℓ} be a set of potential parties, authenti-
cating with respect to (not necessarily distinct) statements Φ = ⟨ϕ1, . . . , ϕℓ⟩ in WAKE protocol Π. Let the
challenge instance be (U, i), with associated session identifier sidi

U = M1|| · · · ||Mn containing first message
M1 the set of participants for the session. Then, A is forwarding for (U, i) if either there exists a query to
the Execute oracle with input including the instance (U, i) or if for all V ′ ∈M1 with V ′ ̸= U there exists an
instance (V, j) ∈ P × N such that all of the following conditions hold:

1. ϕV = ϕV ′ , and
2. for each query to the send oracle of the form Send(U, i, M) → R outputting response R ̸= NULL from

instance Πi
U there exists a corresponding query to the send oracle Send(V, j, R) forwarding the response to

instance Πj
V , unless the response was empty, and

3. for each query to the send oracle of the form Send(V, j, M ′)→ R′ outputting a response R′ ̸= NULL from
instance Πj

V there exists a corresponding query to the send oracle Send(U, i, R′) forwarding the response
to instance Πi

U , unless the response was empty.

The set of participants V ′ ∈M1 such that the above outlined conditions do not hold are called the impersonated
set, denoted IS(U, i).

As usual, the goal of an adversary in the confidentiality experiment (Definition 4) is to distinguish the
challenge session key from a random key given access to (1) transcripts of valid executions via the Execute
oracle, (2) the ability to reveal keys for eavesdropped transcripts via the Reveal oracle, and (3) access to
long term secrets (witnesses) of the participants. Notably, any adversary with the long term secret of a
participant can participate in the key exchange on behalf of that participant and then will then be able
to trivially distinguish the computed session key. Additionally, an adversary that has revealed the session
key for the challenge session9 can also trivially distinguish the session key from random. This motivates an
additional requirement, namely that the challenge participant must be fresh according to Definition 12.

The freshness requirement specifies that for challenge Πi
U the adversary has neither revealed the session

key for any instance participating in the execution with (U, i) nor has she injected any messages after learning
a participant’s witness.

Definition 12 (Freshness). An instance Πi
U is considered to be fresh if for all V ∈ P, A has not queried

Reveal(V, j) for any Πj
V such that sidj

V ≡ sidi
U .

An admissible adversary is one that does not trivially violate the properties of authenticity or confiden-
tiality; the only adversaries considered are those that output a fresh challenge (U, i) with respect to which
they are not forwarding.
8 The expected statements are the statements associated to the parties appearing in message 1 of the session identifier.

For sidi
U = M1|| · · · ||Mn with M1 = Ui1 , . . . , Uik the challenge instance would expect to interact with participants

authenticating with respect to {ϕi1 , . . . , ϕik}.
9 The challenge session is the session executed by the challenge instance.
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Definition 13 (Admissible Adversary). Consider participants P = {V1, . . . , Vℓ} executing a WAKE
protocol Π. An adversary A is considered admissible if A outputs a fresh challenge (U, i) on which A is not
forwarding.

Confidentiality: Confidentiality is the requirement that an eavesdropping adversary cannot distinguish
the real session key from a random one. In the confidentiality experiment, seen in Figure 4, the adversary
is an eavesdropper that cannot inject any messages. The adversary must then output a challenge instance
(U, i). If the challenge instance has accepted and generated a key then the adversary receives as input either
the real session key or a random key, Confidentiality stipulates that no admissible adversary can determine
which key she has received, even given the secret vector of witnesses.

Definition 14 (WAKE Confidentiality). The advantage of an adversary A with respect to the WAKE pro-
tocol Π in the confidentiality game seen in Figure 4 is defined as the following quantity: AdvWAKE-confid

Π,A (λ,R, Φ,DΦ) =
|2·Pr[ExpWAKE-confid

Π,A (λ,R, Φ,DΦ) = 1] − 1|. The WAKE protocol Π is confidential if, for all λ ∈ N, for all
relations R, for all statement vectors Φ, for all distributions over witness sets DΦ and for all admissible
non-uniform PPT A, the advantage of A is negligible.

ExpWAKE-confid
Π,A (λ,R, Φ,DΦ)

b
$←− {0, 1}

pp← SetUp(1λ,R)
w← DΦ

P ← {Vi[ϕi, wi]}|w|
i=1

(U, i)← AExecute(),Reveal()(Φ, w)

if acci
U = FALSE : output b

k1 ← ski
U , k0

$←− K

b′ ← AExecute(),Reveal()(kb)
if b = b′ : output 1
else : output 0

Fig. 4: ExpWAKE-confid
Π,A : Experiment for WAKE confidentiality.

In the confidentiality experiment the adversary is granted access to Execute, but not Send. The adversary
is also provided the complete vector of witnesses at the start of the experiment. This models the fact that
an eavesdropping adversary with access to valid witnesses should not be able to distinguish the key from
random. The Send oracle can be simulated by the adversary with knowledge of the witnesses.

Remark 1 (Forward Secrecy). We observe that our model of confidentiality guarantees forward secrecy, i.e.
that a session key remains indistinguishable from random even if the long term secrets of the participants
are compromised. This is modelled by providing A with the entire vector of witnesses w at the beginning of
the confidentiality experiment. We also observe that this is a somewhat stronger notion of forward secrecy
than the one modelled through a corruption oracle in [KY03].

Authenticity: Authenticity is the requirement that an unauthenticated participant cannot convince an-
other participant to accept and consequently generate a session key; if an instance accepts in the authenticity
experiment then either the adversary was forwarding on that instance or the adversary knows some witness.
Knowledge of a witness is modeled by the existence of an extractor that can output a witness from the view of
the adversary. In the authenticity experiment, seen in Figure 5, each participant U receives a witness and the
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adversary facilitates communication between the authenticated participants via the Send and Reveal oracles.
The adversary ultimately outputs a challenge: (U, i, V ). For any admissible adversary outputting a challenge
consisting of an accepting instance Πi

U there exists an extractor which can output a witness to the statement
ϕV . It is important that V must appear in the impersonation set of the challenge instance, meaning that the
adversary was not merely forwarding messages between Πi

U and any participant authenticating with respect
to ϕV . This is formalized in Definition 15.

Definition 15 (WAKE Authenticity). The advantage of an adversary A with respect to WAKE protocol
Π in the authentication game seen in Figure 5 is defined as

AdvWAKE-auth
Π,A,EA

(λ,R, Φ,DΦ) = Pr[ExpWAKE-auth
Π,A,EA

(λ,R, Φ,DΦ) = 1]

A WAKE protocol Π is witness-authenticated if for all admissible non-uniform PPT A there exists a PPT
extractor EA, for all λ ∈ N, for all relations R, for all statement vectors Φ, and for all witness distributions
DΦ, the advantage of A is negligible.

ExpWAKE-auth
Π,A (λ,R, Φ,DΦ)

pp← SetUp(1λ,R)
w← DΦ

P ← {Vi[ϕi, wi]}|w|
i=1

(U, i, V )← ASend(),Reveal()(Φ)
assert (V ∈ IS(U, i))

bacc ← acci
U

w′ ← EA(viewA)
bext ← (ϕV , w′) ∈ R
output (bacc ∧ b̄ext)

Fig. 5: ExpWAKE-auth
Π,A,EA

: Experiment for WAKE authenticity.

In the authentication experimentA is not equipped with an Execute oracle; the Execute oracle is redundant
as it can be simulated with the Send oracle.

Active & Passive Security: The distinction between passively and actively secure group key agreement,
as seen in [KY03], is centered around the Send oracle; a protocol is considered actively secure if it is secure
against an adversary that has access to Send, otherwise the protocol is considered passively secure. This
distinction is not applicable to WAKE.

Consider a variant of the WAKE confidentiality experiment in which the adversary is also granted access
to the Send oracle. The inclusion of Send does not change the experiment; A has access to w, the vector of
witnesses, and can therefore simulate Send even if she is not granted access to it explicitly. Additionally, any
queries to the Send oracle will not affect the challenge session as the adversary is necessarily eavesdropping on
the challenge. Alternatively, consider a variant of the WAKE authenticity experiment in which the adversary
is not allowed any Send queries but instead can query Execute. The removal of Send renders every adversary
inadmissible; an adversary exclusively using the Execute oracle has not injected any of her own messages
and is forwarding. Therefore, in the absence of a distinction between passive and active variants of the
confidentiality and authenticity experiments, we define passive and active security for WAKE as in Remark 2.
Passively secure protocols are those that satisfy confidentiality while actively secure protocols additionally
satisfy authenticity and simulatability.
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Remark 2 (Active and Passive Security for WAKE). We say a WAKE protocol achieves passive security if
it satisfies confidentiality (Definition 14); it achieves active security if it satisfies confidentiality, authenticity
(Definition 15).

Passive security for WAKE (as defined here) is equivalent to passive security for group key exchange (as
defined in [KY03]). This can be seen by comparing the relevant experiments; a passively secure group key
exchange generates session keys that are indistinguishable from random by an adversary that controls all
communication in the network and has access to Execute, Reveal, Corrupt and outputs a fresh challenge. This
is equivalent to the WAKE-confid experiment, except instead of providing a Corrupt oracle the adversary is
given all of the secrets at the start of the experiment.

In fact, a passively secure WAKE does not have to require that the participants make use of their witnesses
at all. Therefore, the following simulatability requirement is only meaningful for actively-secure WAKE.

Simulatability: Given a correct and confidential group key exchange protocol Π between participants
P = {P1, . . . , Pℓ}, one can obtain witness-authentication for associated statements Φ and witnesses W =
{wV1 , . . . , wVℓ

} by following Π with the following modifications: (1) when participant U should send a message
M according to Π he concatenates his witness to the message, instead sending M ||wU , (2) when participant
U receives a message M = M ′||wU ′ from participant U ′ he verifies that (ϕU ′ , wU ′) ∈ R and aborts if this
verification fails. Such a solution does not align with our intuition. This, along with the malleability attack
seen in Section 1, motivates a third requirement: simulatability. Simulatability is the requirement that the
adversary cannot learn anything about the witness from the messages sent by that participant. This is implied
by the existence of a simulator which, without access to the witness, can generate messages indistinguishable
from those of a real participant.

Simulatability requires the existence of a second setup algorithm, SimSetUp, which outputs public param-
eters indistinguishable from those output by the usual setup algorithm along with a trapdoor τ . With the
trapdoor any participant can be simulated without access to their associated witness. In the simulatability
experiment the adversary is given access to a SetKey oracle which takes as input (ϕ, w) and generates a
new participant associated with the statement-witness pair. The adversary then interacts with either the
real participants or the simulated versions using Send∗

b . The real participants behave honestly and interact
using the witness provided to them by some query to SetKeys, whereas the simulated version only has access
to the public statements and the trapdoor. Any oracle query must have a corresponding SetKeys query for
each participant appearing in the input. The adversary outputs her guess b′, indicating if she believes she is
interacting with real participants or simulators.

Definition 16 (WAKE Simulatability). A WAKE protocol Π is simulatable if there exist efficient algo-
rithms (SimSetUp, Sim) (the latter stateful) such that for all λ ∈ N, relations R and for all non-uniform PPT
A, the advantage of A in the simulatability game seen in Figure 6 is negligible, where the latter is defined as
AdvWAKE-sim

Π,A (λ,R) = 2·Pr[ExpWAKE-sim
Π,A (λ,R) = 1]− 1.

4 Unilateral WAKE

Unilateral Witness-Authenticated Key Exchange (U-WAKE) is a specialization of the above group WAKE to
the two party, unilaterally authenticated, case. U-WAKE can also be seen as an adaptation of Unilaterally
Authenticated Key Exchange (UAKE) [DF17], in which an unauthenticated participant establishes a key with
an authenticated participant, to the witness-authenticated case. In U-WAKE, authentication is done with
respect to a witness for some statement associated to the authenticated participant, called the Responder
(Res). All adaptations of the WAKE model (appearing in Section 3) to the unilaterally authenticated two
participant setting are listed:

– The set of potential participants is denoted P = {Init, Res1, . . . , Resℓ(λ)−1}10

– ϕInit is a dummy statement (one that is in the language and is easy to decide)
10 Notice this is just a change of notation to make explicit which parties are authenticated or not, namely the

responders and the initiatior.
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ExpWAKE-sim
Π,A (λ,R)

b
$←− {0, 1};P ← ∅;

pp1 ← SetUp(1λ,R); (pp0, τ)← SimSetUp(1λ,R)

b′ ← ASend∗
b

,Reveal,SetKeys

if b = b′ : return 1
else : return 0

SetKeys(U, ϕU , wU )
assert (ϕU , wU ) ∈ R
assert U ̸∈ P Extend set of parties P with user U

Set U’s statement (resp. witness) to ϕU ( resp. wU )

Send∗
0(U, i, m̃)

// uses honest party and witness wU

Respond like the honest Send would (definition 15)

Send∗
1(U, i, m̃)

// simulates honest party U without access to witness
Output Sim(U, i, m̃)

Fig. 6: ExpWAKE-sim
Π,A : Experiment for WAKE simulatability. Simulator Sim is stateful, has access to statements

ϕU and other parameters (e.g., trapdoor τ), but not to the witnesses wU .

– Challenge instances: the authenticity challenge must be of the form (Init, i, Resj) and the confidentiality
challenge must be of the form (Init, i)

Importantly, as Init is unauthenticated the associated statement ϕInit is such that a witness W can be
computed in polynomial time.11 Additionally, in a two party interaction the challenge must be an instance of
the Init. Therefore, any admissible adversary for U-WAKE is an admissible adversary for WAKE that outputs
such a challenge. The curious reader is referred to Appendix A for explicit formulations of the U-WAKE
Experiments.

4.1 Construction from KEM and SOK

Given a signature of knowledge and a key encapsulation mechanism one can construct U-WAKE. As a concrete
example to keep in mind throughout this section, we recommend considering Diffie-Hellman (DHKE): Init
first samples randomness x and sends as their first message the associated public key hI = gx and Res does
the same, computing hR = gy, along with a signature of knowledge σ on m = hI ||hR. The response is then
hR, σ. Contingent upon signature validation, the Initiator then computes sk = (hR)x and the Responder
computes sk = (hI)y as the session key.

For U-WAKE, the public parameters output by SetUp are ppU-WAKE = {λ, R, ppSOK}, the security param-
eter, the relation and the public parameters for the signature of knowledge. The public parameters output
by SimSetUp also include the trapdoor for the signature τSOK. In Figure 7 we present the construction of
U-WAKE from KEM and SOK.

Theorem 1 (Π is secure.). Let KEM be a correct and CPA-secure key encapsulation mechanism. Let SOK
be a perfectly correct and simulatable, simulation-extractable signature of knowledge. Then, the protocol Π,
as seen in Figure 7, is an actively secure and simulatable U-WAKE.
11 This modification can allow the group-WAKE to generalize to a setting where an arbitrary subset of the potential

parties are unauthenticated in such a way.
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U-WAKE
Initiator(ppWAKE, ϕ) Responder(ppWAKE, ϕ, w)

(ek, dk)← KEM.KG(1λ)
ek−−−−−−−−−−→

(k, C)← KEM.Encap(ek)
m← C||ek
σ ← SOK.SSign(ppSOK, ϕ, w, m)

C,σ←−−−−−−−−−−−
b← SOK.SVfy(ppSOK, ϕ, C||ek, σ)
if b = 1 : k ← KEM.Decap(dk, C)
else : k = ⊥

Fig. 7: U-WAKE from KEM and SOK

A full proof of this theorem appears in Appendix B.

5 A Compiler From Passive to Active Security

In this section we describe a compiler that transforms any passively secure key-exchange into a witness-
authenticated, actively secure protocol. Our compiler revisits the one presented in [KY03], adapting it to the
witness-authenticated setting.

5.1 The Compiler Construction

The compiler takes as input a passively secure protocol Π and outputs an actively secure, simulatable,
protocol Π∗. This transformation is at the expense of an additional round in which each participant samples
and distributes a random nonce. Following this round, each participant proceeds as they would in Π with a
few additional steps. To each message m they should send according to Π, they add a signature of knowledge
on that message concatenated with the nonces from Round 0 and upon receipt of any message the participant
must first verify the signature. The explicit construction is provided in fig. 8.

5.2 Security

Theorem 2. If Σ is a passively-secure protocol (remark 2) then Σ∗ (fig. 8) is a fully secure and simulatable
witness-authenticated key exchange protocol (section 3.2 and remark 2) .

Lemma 1. The protocol in fig. 8 satisfies confidentiality (definition 14).

Proof. We reduce to the confidentiality of the underlying passive scheme as follows. For a confidentiality
adversary Aact against compiled protocol Σ∗, we construct a confidentiality adversary Apas against the
original passively secure protocol. See fig. 9.

We claim that the advantage of Apas in the confidentiality game for protocol Σ is negligibly close to that
of Aact in the confidentiality game for protocol Σ∗. We now define three hybrids:

– Hact: this is the advantage of Aact in the confidentiality game for protocol Σ∗

– Hact-zk. this is the advantage of Aact in a modified confidentiality game for protocol Σ∗, where the
challenger acts as in Hact, except that it uses a simulator for signatures of knowledge. We claim that
Hact ≈ Hact-zk: this follows from simulatability of signatures of knowledge. If the two advantages were not
negligibly close than we can easily build a distinguisher for real/simulated signatures of knowledge.
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– Setup: We run the setup for Σ and the setup for the signature of knowledge scheme.
– Round 0: each user Ui samples a random nonce ri ←$ {0, 1}λ and sends message (Ui||0||ri) to all

the other parties. After receiving the related message from all the other parties, each instance Πj
U sets

and stores noncesj
U := U1||r1|| . . . ||Um||rm and Sj

U := {U1, . . . , Um} (the set of participants) as local
information.

– Following rounds:
• Whenever instance Πi

U should send (U ||j||m) by Σ to all other parties:
1. it produces m∗ =

(
U ||j||m||noncesj

U

)
2. it signs it as σ ← SOK.SSign(pp, ϕU , wU , m∗)
3. it sends (m∗||σ) to all other parties
• Whenever instance Πi

U receives (V ||j||m||nonces||σ):
1. it checks V ∈ Si

U \ {U}; it aborts otherwise
2. it checks signature σ on V ||j||m||nonces against the statement of party V and that nonces =

noncesi
U

12; it aborts otherwise
3. it checks the sequence number j is the expected one; it aborts otherwise
4. it continues as in protocol Σ

Above U = {U1, . . . , Um} denotes the set of parties willing to establish a common key.

Fig. 8: Compiler from protocol Σ with passive security to one with active security (Σ∗).

Apas(pppas)
(ppsok, τ)← SSimSetup(1λ, R)
Run Aact(ppsok||pppas) and emulate each oracle query as follows

Execute(·) :
− Invoke Execute for Σ obtaining transcript(s) T
− Extend T emulating rest of the protocol Σ∗ as in fig. 8 :
∗ sample nonces as appropriately
∗ Compute signatures invoking SoK simulator

− Return T “compiled” with nonces and simulated signatures
Reveal(·) :
− Respond using its own Reveal oracle

Let (U, i) be the output of Aact at the end of interaction
Send (U, i) to the challenger receiving back a challenge key k
Run Aact(k)(emulating oracles as before) till it outputs bit b

Output b

Fig. 9: Reduction for confidentiality in compiled construction.

– Hpas: this is the advantage ofApas in the confidentiality game for protocol Σ. We claim thatHact-zk ≡ Hpas:
in fact they are exactly the same distribution except with different syntaxes (the former produces simulated
signatures in the challenge while the latter in the adversary Apas).

This concludes the proof.

Lemma 2. The protocol in fig. 8 satisfies authentication (definition 15)
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Proof. In order to argue authentication security, given an adversary A∗, we construct an extractor E∗13 such
that: either E∗ can extract a witness with reasonable probability (this probability should in particular be a
noticeable fraction of the advantage of A∗), or A∗’s advantage was too low to be of interest to begin with.
To build this extractor E∗ we rely on the simulation-soundness property of signatures of knowledge. The
latter states that, given an adversary forging a valid signature (with access to a simulator oracle), there is
an extractor ESoK for it that is able to produce a valid witness. We then first define adversary ASoK for the
simulation-security experiment: it internally runs A∗ and responds to each of its Send queries by emulating
the behavior of the honest parties. Adversary ASoK may not know the witnesses of the honest parties, but
can still emulate each of their signatures by using its simulation oracle. At the end of this interaction A∗ will
declare an instance challenge (U, i) where it “impersonated” some of the honest parties and that resulted
in an acceptance. Adversary ASoK will then retrieve a forged message (m∗||σ) (any message with sequence
number greater or equal than 1 will have this structure) in the transcript in Πi

U . It will then return the
challenge triple (xV , σ, m∗) where party V is the party having message m∗ claims as a sender. We can claim
that either the returned triple is a valid challenge for the simulation-extractability game (with non-negligible
probability), or A∗ is not admissible.

Recall that, for A∗ to be admissible, it must be “forging” one of the messages in the instance Πi
U . If it

forges a message14 at round 0, then it’s using a nonce that is not the output of any of the honest parties.
Say it’s nonce rj . The adversary would not be able to query that party Uj using that nonce since with
overwhelming probability it would be rejected if appended to any message (since Uj did not produce it).
Therefore, A∗ would be forced to forge the following messages too to stay admissible and thus we can reduce
to the following case directly.

If adversary A∗ is forging a message at a round j ≥ 1 on behalf of some party V , then it must also
be producing a signature for it (recall that all messages at this stage are of the form m∗||σ where m∗ =
(V ||j||m||noncesj

U )). By construction this will be a valid challenge for the simulation-extraction game of SoK
(in the event that the interaction produced by A∗ is admissible). Reducing to the security of signatures of
knowledge concludes the proof.

We describe the adversary ASoK and extractor E∗ in fig. 10. In the description of E∗, we denote by ESoK
the extractor for ASoK from the simulation-extractability of signatures of knowledge.

Lemma 3. The protocol in fig. 8 satisfies simulatability (definition 16)

Proof. We simulate relying on the simulation property of signatures of knowledge. We define algorithm
SimSetUp as the algorithm that runs SSimSetUp and returns its output (see definition 5). We define the
simulator in fig. 11. Given A∗ for the simulatability game of the key agreement, we build an adversary A
(fig. 12) for the zero-knowledge property of signatures of knowledge. This adversary internally uses A∗ and
has access to an oracle O that can be either a simulator or the honest signing algorithm. The advantage
of A is the same as that of A∗. Observing that the former must be negligible by simulatability of the SoK
concludes the proof.

6 Achieving Three-Round WAKE for Groups

Here we show how we can instantiate a passive secure scheme (see remark 2) in our compiler in section 5 to
obtain a three-round WAKE for groups (we discuss instantiations for signatures of knowledge in section 8)
Presented in Figure 13 is ΠGKE, a passively secure protocol for group key exchange. This protocol was
constructed by Burmester and Desmedt [BD95], and then was adapted and proven secure under the Decisional
Diffie-Hellman assumption by Katz and Yung [KY03]. Running the compiler seen in Figure 8 on Πgke yields
a three round, actively secure and simulatable WAKE protocol. This is formally stated in Theorem 1.

First we review the Decisional Diffie-Hellman Assumption. For G a cyclic group of order q ∈ P with
generator g, the Decisional Diffie-Hellman (DDH) Problem is to distinguish between Diffie-Hellman tuples
(gx, gy, gxy) and random tuples of the form (gx, gy, gz) for x, y ∈ Z∗

q , z ∈ Z∗
q \ {xy}. Consider an infinite

13 We can show that we can build such an extractor for each of the parties in the impersonation set.
14 In this discussion we consider only messages that look valid to the receiver, since otherwise the latter would abort.
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AS(·)
SoK(ppSoK)
Run A∗ and emulate each oracle query as follows

Send(·) :
− honestly run Send for all steps in fig. 8 except signatures
− Compute signatures invoking simulator oracle S(·)

Reveal(·) :
− Respond honestly using the internal state from the Send queries

Let (U, i, V ) be the output of A∗ at the end of interaction

For transcript of instance Πi
U :

− Find message (m∗||σ) where m∗ is of the form (V || . . . ) in IS(U, i)
(this corresponds to a message claimed by party V but forged by A∗)
− If no such message exists, abort

return (ϕV , m∗, σ)

E∗(view∗)
Compute viewSoK from view∗.This includes:
− the randomness used by ASoK

− the query responses from Sim
w ← ESoK(viewSoK)
return w

Fig. 10: Adversary for the simulation-extractability of signature of knowledge (fig. 3) and extractor for the
authenticy game (definition 15). The impersonating set IS is defined in definition 11.

Sim(U, i, m̃)
Respond like the honest Send (definition 15) would for construction in fig. 8

except that signatures are produced as follows:
σ ← SSimSign(τSoK, ϕU , m∗)

where U is the party claiming to send message m∗

(see also bullet 2, case send, in fig. 8)

Fig. 11: Simulator for construction in fig. 8

sequence of groups G = {Gλ}λ≥1 indexed by the security parameter λ and define the advantage of an
adversary A against DDH in Gλ as follows:

AdvDDH
Gλ,A(λ) := |Pr[A(gx, gy, gxy) = 1|x, y ← Z∗

q ] − Pr[A(gx, gy, gz) = 1|x, y, z ← Z∗
q \ {xy}]|

The DDH assumption states that for all PPT A, the advantage AdvDDH
Gλ,A(λ) is negligible. The variant of

DDH described above excludes the possibility that z = xy for simplicity.
The participant set is denoted P = {Ui}n

i=1 with participants indexed mod n, such that Un = U0 and
Un+1 = U1. The inputs G, g are generated beforehand but can also be generated by a single player at the
expense of an additional round. The communication style is referred to as broadcasting but it is important
to note that a broadcast channel is not assumed in the construction; participants send all messages via
point-to-point links which is referred to as broadcasting.

The session key generated by the protocol in Fig. 13 is sk = gx1x2+x2x3+···+xnx1 and is common to
all participants. ΠGKE achieves passive security for group key exchanges; the protocol is secure against an
eavesdropping adversary in a RoR experiment. Passive security, along with forward security, is proven in
[KY03].
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AO(·)(ppSoK)
Run A∗ emulating its oracles (and keeping appropriate state):
− all oracles but Send are run as for the honest case
− a query to Send is run as the honest Send for construction in fig. 8

except that signatures are produced invoking oracle O
Return the same bit as A∗ at the end of interaction

Fig. 12: Adversary for reduction to zero-knowledge of SoK

ΠGKE: group key exchange between participant set P = {U1, . . . , Un}
Input: G, g

Round 1: Each Ui samples xi
$←− Zq and broadcasts zi = gxi

Round 2: Each Ui broadcasts Xi = (zi+1/zi−1)xi

Key Computation: Each Ui computes session key
ski = (zi−1)nxi ·Xn−1

i ·Xn−2
i+1 · · ·Xi+n−2

Fig. 13: A passively secure group key exchange protocol [KY03]

Theorem 3 (Passive Security of ΠGKE). The group key exchange protocol ΠGKE seen in Figure 13 is
passively secure, as defined in Remark 2, under the DDH assumption.

For concreteness, let ΣSOK be the signature of knowledge detailed in [GM17]. We apply the compiler
detailed in Section 5 to ΠGKE, using ΣSOK as the signature of knowledge, to get a three-round actively secure
WAKE protocol.

Corollary 1 (Three Round WAKE). ΠWAKE, the protocol resulting from applying the compiler (Fig-
ure 8) on ΠGKE (Figure 13) and ΣSOK, yields a three round actively secure WAKE.

7 Offline/Online Computation

The most expensive part of our protocol is the computation of the Signature of Knowledge, which is imple-
mented using a Non-Interactive Proof of Knowledge of the witness. If implemented with a SNARK, this proof
can be constructed with small bandwidth and verification time. It is well known that the bottleneck cost
is the time it takes for the Prover to compute such proof, something which is confirmed by our evaluation
experiments described in Section 8. We note that we can modify the protocol so that the cost of computing
the SNARK can be moved to an offline phase, before the participant is contacted for a WAKE.

The intuition is as follows: during the offline phase the witness holder (Responder) generates (sk, vk) a
key pair for a signature scheme where sk is the secret signing key and vk is the public verification key. Then
the Prover uses an SOK SNARK to sign vk. Let σ1 the resulting signature. The Prover stores (sk, vk), σ1.
During the online phase when the Responder receives ek it will sign m = C||ek it using sk, let σ2 the resulting
signature. The Responder then sends back vk, σ1, σ2. The Initiator checks that σ1 is a correct SOK for vk,
and that σ2 is a correct signature of ek under vk.

The modified protocol can be seen in Figure 14, where DS is an EUF-CMA digital signature scheme defined
by the three algorithms: key generation (vk, sk) ← Gen(1λ), signature σ ← Sign(sk, m) and verification
{0, 1} ← Vfy(vk, m, σ).

Intuitively, the proof of security follows from the security of both the SOK and the regular signature
scheme, which incidentally can be a one-time signature since each verification key is used to sign only
one message. The main technical issue is in the proof of extractability for the witness, since the Prover is
guaranteed to know the witness when it computed σ1 and not when it successfully completes the protocol.
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Offline & Online U-WAKE
Offline Phase

Responder(ppWAKE, ϕ, w)

(vk, sk)← DS.Gen(1λ)
σ1 ← SOK.SSign(ppSOK, ϕ, w, vk)
s← {sk, vk, σ1}

Online Phase
Initiator(ppWAKE, ϕ) Responder(ppWAKE, ϕ, w, s)

(ek, dk)← KEM.KG(1λ)
ek−−−−−−−−−→

(k, C)← KEM.Encap(ek)
m← C||ek
σ2 ← DS.Sign(sk, m)

C,vk,σ1,σ2←−−−−−−−−−
bSOK ← SOK.SVfy(pp, ϕ, vk, σ1)
bDS ← DS.Vfy(vk, C||ek, σ2)
if (bSOK ∧ bDS) :

k ← KEM.Decap(dk, C)
else : k = ⊥

Fig. 14: Offline & Online phases for U-WAKE

In some applications this may be an issue (e.g. when the WAKE should guarantee that the Responder still
owns a particular file). One way to address this issue in practice is to add some form of timestamp to the
message signed in the offline case, which guarantees at least that the Responder knew the witness relatively
recently. A full proof will appear in the final version.

While the above discussion, and Figure 14, refer only to the U-WAKE setting this modification can be
generalized and applied to the group-WAKE setting by having all authenticated participants execute the
offline phase.

8 Experimental Evaluation

In this section we discuss the concrete efficiency of our constructions in some of the practical settings
mentioned in the Introduction. While we explicitly focus on the two-party case where only one of the two
parties is authenticated, the concrete complexity roughly extends to the group-authenticated case. The
dominating costs in our constructions is that of signatures of knowledge. As discussed in Section 7, this cost
can be pushed to an offline stage performed by the authenticated parties. We consider the following settings
(see table 1):

– Dark pools: we consider the case of a committed value (e.g., a coin) and authentication through a proof
that the value is above a certain range. We use ranges of 32 bits in our benchmarks and SHA256 as a
commitment method.

– Zero-Knowledge Contingent Payment (ZKCP): this corresponds to the scenario where a seller wants to
start a channel from a party claiming to have a digital good satisfying a certain property. A witness-
authenticated private channel can be used for example to negotiate a price before engaging in a ZKCP
protocol. We consider two settings for ZKCP: the “Sudoku benchmark” used in previous works on ZKCP
and the bug bounty setting (we benchmark a sudoku of standard size N = 10, but in general the circuit
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Setting Relation Authenticated party
(offline running time)

Bidding/Dark Pools
[NMKW21] c = Comm(s, ρ) ∧ s ≥ B 3–4s

ZKCP
[Max, CGGN17] solvesSudoku(s, pzl) 0.5–1s

Bug bounty Cbuggy(w) = 1 ∧ Cexpect(w) = 0 55–58s
IPFS [Prob] h = blake3hash(F ) 65–68s

Table 1: Running times for different settings/relations for construction in fig. 7 using Diffie-Hellman Key
Exchanges as underlying KEM. Underlined identifiers denote public inputs; boldface denotes a witness held
by the authenticated party.

complexity of checking a Sudoku solution roughly grows with N3). In the latter, a software producer
of program Cbuggy is incentivizing users to find potential bugs in the program. Here we model this by
introducing an additional input, a (small) program Cexpect checking some necessary expected condition
that is violated by the bug. As an example consider a prime-testing program Cbuggy. here the bug could
consist of an even number greater than 2 that the program erroneously recognizes as a prime. In this case
we could have for example Cexpect(z) := “z is odd ∨ z = 2”. In our benchmarks we use |Cexpect| ≈ 500K
wires and |Cbuggy| ≈ 10K wires .

– Retrieval Market: we model a settings similar to that of IPFS [Prob], in which files are identified through
a content ID (CID) which roughly corresponds to a hash of the file. The typical block size files are broken
up into is 256KB, which is what we use in our benchmarks15.

Concrete costs All the costs discussed here refer to the instantiations and experimental setting described
at the end of this section. The offline running time of the authenticated party is summarized in table 1.

Communication complexity is constant. We estimate it to be below 0.5 KB in total for the unilateral
two-party case and of approximately N KB for the group authentication of N parties.

The online running time is also always constant and is of the order of tens of milliseconds. In the
unauthenticated setting it is even lower for the unautheunticated party. Naturally, if we do not use an
offline/online approach the total running time of each party is the sum of the offline and online running
times.

Details on Instantiations and Experimental Setting For signatures of knowledge we consider the
construction from [GM17] based on a simulation-extractable variant of [Gro16]. A signature of knowledge
consists of three group elements (two elements in G1 and one in G2), plus a hash. Using BLS12-381 [bls] as
a concrete curve a signature of knowledge consists of 224 bytes (192 bytes for the group elements, plus 32
bytes for SHA256). For the online stage (see section 7), using BLS signatures [BLS04] as DS in section 7
would give us public keys of 48 bytes and signatures of 96 bytes (again using curve BLS12-381).

We run all our experiments on Amazon EC2 c5ad.16xlarge with 128 GiB of RAM running 3.3GHz AMD
EPYC 7002 series CPUs. We ran our experiments using a single thread. For our estimates, we rely on the
implementation of [GM17] in libsnark16 using the curve implemented in the libsnark library, BN254, (this

15 Our benchmarks differ from the current implementation of IPFS in the hash function: we use Blake3 [AONZ]
instead of SHA256. Producing a (very succinct) signature of knowledge for a SHA computation of that size is
significantly more expensive: while hashing with Blake3 requires approximately 219 constraints, SHA256 would
require approximately 227. It is plausible IPFS will support proof-friendly hash functions such as Blake3 in the
future.

16 https://github.com/scipr-lab/libsnark
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has comparable running times17 to BLS12-381 which provides 128 bit of security, which provides 110 bits of
security of BN254).
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A Unilaterally Witness-Authenticated Key Exchange Model

Unilateral authentication is defined in the two participant setting. One participant, the initiator (Init) is
unauthenticated. The authenticated party is called the Responder (Res). The notation for the set of potential
participants is changed to be P = {Init, Res1, . . . , Resℓ−1}, authenticating with respect to the vector Φ =
⟨ϕR1 , . . . , ϕRℓ−1 , ϕInit⟩ where ϕInit is a “dummy statement” for which a witness can be computed in polynomial
time. All participant-associated variables and oracles remain the same as in the group setting of WAKE.

Correctness for U-WAKE then requires that Init, when executing the protocol with any Resj (authenticated
with respect to the instance ϕRj ), will accept and the two participants will terminate with a common session
key. Correctness is adapted to explicitly apply to the unilateral authentication case but it should be noted
that Definition 10 still applies under the condition that the statement ϕInit is easy.

Definition 17 (U-WAKE Correctness). A U-WAKE protocol Π is correct if for all relations R, for all
sets of potential participants P = {Init, Res1, . . . , Resℓ−1} of size ℓ = ℓ(λ), for all i, j, k ∈ N such that
ϕResk

, wResk
∈ R, sidi

Init ≡ sidj
Resk

and acci
Init = accj

Resk
= TRUE then ski

Init = skj
Resk

.

Confidentiality: The goal of the adversary in the confidentiality game is to be able to distinguish a random
key from the real session key generated by an eavesdropped protocol execution. The main modification to
this experiment is that the challenge should be an instance of Init.

Definition 18 (U-WAKE Confidentiality). The advantage of an adversary A with respect to the U-WAKE
protocol Π in the confidentiality game seen in Figure 15 is defined as

AdvU-WAKE-confid
Π,A (λ,R, Φ,DΦ) = |2·Pr[ExpU-WAKE-confid

Π,A (λ,R, Φ,DΦ) = 1]− 1|

The U-WAKE protocol Π is confidential if, for all λ ∈ N, for all relations R, for all statement vectors Φ,
for all distributions over witness sets DΦ and for all non-uniform admissible PPT A, the advantage of A is
negligible.
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ExpU-WAKE-confid
Π,A (λ,R, Φ,DΦ)

b
$←− {0, 1}

pp← SetUp(1λ,R)
w← DΦ

P ← {Resi[ϕi, wi]}|w|
i=1 ∪ {Init[ϕInit, wInit]}

i← AExecute(),Reveal()(Φ, w)

if acci
Init = FALSE : output b

else : k1 ← ski
Init, k0

$←− K

b′ ← AExecute(),Reveal()(kb)
if b = b′ : output 1
else : output 0

Fig. 15: ExpU-WAKE-confid
Π,A : Experiment for U-WAKE confidentiality.

Authenticity: The goal of the adversary in the authenticity experiment should be to convince the Initiator
to accept and consequently generate a session key. Therefore, the first and most obvious change to Figure 5
should be that the challenge instance output by A should always be an instance of Init. Then, A must
convince Πi

Init to accept without knowledge of a witness. The adversary A must accomplish this goal without
merely playing as a wire between Init and some Res and without otherwise cheating. Note that the extractor
outputs a witness for the participant output along with the challenge instance of Init, which is a witness
corresponding to ϕj for Πk

Rj
.

Definition 19 (U-WAKE Authenticity). The advantage of an adversary A with respect to the U-WAKE
protocol Π in the authentication game seen in Figure 16 is defined as

AdvU-WAKE-auth
Π,A (λ,R, Φ,D) = Pr[ExpU-WAKE-auth

Π,A (λ,R, Φ,D) = 1]

A U-WAKE protocol Π is witness-authenticated if for all admissible non-uniform PPT A there exists a PPT
extractor EA which for all λ ∈ N, for all relations R, for all statement vectors Φ, for all witness distributions
DΦ, the advantage of A is negligible.

Simulatability: The simulatability experiment remains unchanged.

B Proof of Theorem 1

Restatement of Theorem 1: Let KEM be a correct and CPA-secure key encapsulation mechanism. Let SOK
be a perfectly correct and simulatable, simulation-extractable signature of knowledge. Then, the protocol Π,
as seen in Figure 7, is an actively secure and simulatable U-WAKE.

Proof. Correctness: Correctness follows directly from the correctness of the KEM and SOK. As these are
both perfectly correct the U-WAKE is also perfectly correct.

Confidentiality: An adversary AC with nonnegligible advantage in the confidentiality experiment implies
the existence of an adversary AK with nonnegligible advantage in the KEM-CPA experiment. Assume that
R, Φ, DΦ are such that AC has a nonneligible advantage in the confidentiality experiment.

The adversary AK is given challenge tuple (ek∗, C∗, k∗
b ) and must guess the KEM-CPA real or random bit

bKEM-CPA. AK sets up the U-WAKE as follows: generates the public parameters for the signature of knowledge
ppSOK ← SOK.SSetup(R), and sets the public parameters as ppWAKE = {λ,R, ppSOK}. Then, AK runs AC

with input ppWAKE, Φ, w.
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ExpU-WAKE-auth
Π,A (λ,R, Φ,DΦ)

pp← SetUp(1λ,R)
w← DΦ

P ← {Resi[ϕi, wi)]}|w|
i=1 ∪ {Init[ϕInit, wInit]}

(i, j)← ASend(),Execute()(Φ)
assert (Resj ∈ IS(Init, i))

bacc ← acci
Init

w′ ← EA(viewA)
bext ← (ϕRj , w′) ∈ R
output (bacc ∧ b̄ext)

Fig. 16: ExpU-WAKE-auth
Π,A : Experiment for U-WAKE authenticity.

In response to queries to Execute of the form qk = (Init, k, Resj , i), AK generates an honest transcript be-
tween Πk

Init and Πi
Resj

of the form Tk = ⟨ekk, (Ck, σk)⟩ with signature generated as σk ← SOK.SSign(ppSOK, ϕj , wj , ekk||Ck).
AK stores the generated session key as skk

Init and ski
Resj

, sets sidk
Init = sidi

Resj
= Tk and sets acck

Init = acci
Resj

=
TRUE. Let QE be the total number of queries made to Execute by AC . With probability 1

QE
, AC responds

to the query with T ∗ = ⟨ek∗, (C∗, σ∗)⟩ for σ∗ ← SOK.SSign(ppSOK, ϕj , wj , ek∗||C∗). In response to queries to
Reveal of the form (U, i), AK replies with ski

U .
If AC outputs challenge i such that sidi

Init ≡ T ∗ then AK provides k∗
b as the challenge session key. In this

case, when AC outputs her guess bit b′
confid, AK forwards this bit as her guess for bKEM-CPA. If AC outputs

some other challenge instance AK flips a bit and provides either the real key or a random key. Given that
T ∗ appears only once in the list of QE queries, the probability that AC selects T ∗ as her challenge is 1

QE
.

AK runs 2QE independent copies of AC . Call E the event that T ∗ appears only once in the set of responses
to all queries. Consequently:

Pr[ExpKEM-CPA
AK

(λ)] ≥ 2QE ·Pr[ExpWAKE-confid
Π,AC

(λ,R, Φ,DΦ)]·Pr[T ∗ ← AC(Φ, w)] + negl(λ)
= 2QE ·Pr[ExpWAKE-confid

Π,AC
(λ,R, Φ,DΦ)]·Pr[T ∗ ← AC(Φ, w)|E]·Pr[E] + negl(λ)

= 2 · Pr[ExpWAKE-confid
Π,AC

(λ,R, Φ,DΦ)] · Pr[E] + negl(λ)

≥ 2· (1− 1
e

)·Pr[ExpWAKE-confid
Π,AC

(λ,R, Φ,DΦ)] + negl(λ)

≥ Pr[ExpWAKE-confid
Π,AC

(λ,R, Φ,DΦ)] + negl(λ)

Authenticity: An adversary AA with nonnegligible advantage against the authenticity game implies an
adversary AS against the sig-ext of the SOK. Assume that R, Φ, DΦ are such that AA has a nonneligible
advantage in the authenticity experiment.
AS assigns as the public parameters ppWAKE ← {ppSOK,R, λ} and runs AA with input Φ. Queries to Send

and Reveal are answered honestly by AS , all signatures are generated with queries to the SSimSign oracle.
AA outputs her challenge (Init, i, Resj) with Resj ∈ IS(Init, i). AA is admissible, thus AA was not forward-

ing for Πi
Init and Resj . By Definition 11 this implies that for all Resj′ ∈ P such that ϕResj′ = ϕResj

we have for
all k′: sidk′

Resj′ ̸≡ sidi
Init. We assume that the only participant authenticating with respect to ϕj is Resj , as there

is only a single message sent from the Res to the Init. AA either (1) sent to the instance Πk
Resj

, for some k, a
new encapsulation key not generated by the initiator ek′ ̸= ek← Send(Init, i, Resj), or (2) sent to the initiator
a signed ciphertext not output by a corresponding send query (C ′, σ′) ̸= (C, σ) ← Send(Resj , k, êk), or (3)
both. Consider case (1) where AA did not forward the first message, but forwarded the second. The signature
σ must be a signature of the message m = C||ek, so if AA only supplied an ek′ ̸= ek, σ will not verify and Init

24



will not accept. AA must not have replaced only the first message, she must have replaced either the second
or both messages. In the remaining cases (2) and (3), (C ′, σ′) was not generated as a response to a query
Send(Resj , k, êk) for any k, êk. Therefore σ′ was not an output of some query to the SSimSign oracle made
by AC , but Πi

Init accepted and therefore we know that σ′ verifies: SVfy(ppSOK, ϕResj
, m = (C ′||ek), σ′) = 1 for

ek output by Πi
Init. So, AS outputs (ϕj , m = (C ′||ek), σ′) as her forgery.

If there exists an extractor for AS then there necessarily exists an extractor for AA. The view of AS

contains no information that cannot be calculated in polynomial time from viewAA
. Let this transformation

be viewAS
= T (viewAA

). Construct EAA
, running on viewAA

, assuming the existence of EAS
as follows: EAA

runs T on the view of the AA to get the viewAS
then runs EAS

to get a witness w′ and outputs this witness.
Therefore, because there is no extractor for AA there is no extractor for AS .

The advantage AS is then non-negligible, as it is greater that that of AA.

Simulatability: AW with nonnegligible advantage against U-WAKE simulatability implies the existance of
an adversary AS against SOK simulation. Assume that R is such that AW has a nonnegligle advantage in
the simulation experiment.

On input ppb, AS constructs the public parameters for the U-WAKE as ppb = {ppb
SOK,R, λ} and forwards

this to AW .
For the ith call to SetKeysb by AW , AS saves the statement witness pair as (ϕi, wi) to use when responding

to queries for Responder Resi. AS honestly responds to all queries to Send and Reveal, except instead of using
the signing algorithm she queries her oracle Sb

ppb,τ to generate any signatures. Upon receipt of the guess bit
b′ from AW , AS uses this as her own guess for the real or random bit.

The advantage of AS is then non-negligible, as it is greater than that of AW .
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